GSO01 1023: Survival Analysis

Lecture 1: Introduction to Failure Time Data
Lecturer: Ryan Sun Scribes: Shu-Hsien Cho

The goals of this unit are to introduce notation, discuss ways of probabilistically describing the distribution
of a ‘survival time’ random variable, apply these to several common parametric families, and discuss how
observations of survival times can be right-censored.

1.1 Failure Time Distribution

Suppose T is a non-negative random variable representing the time until some event of interest. For example,
T might denote:

e the elapsed time from diagnosis of a disease until death
e the elapsed time between administration of a vaccine and development of an infection

e the elapsed time from the start of treatment of a symptomatic disease and the suppression of symptoms

1.1.1 T Continuous

We shall assume that T is continuous unless we specify otherwise. The probability density function (p.d.f.)
and cumulative distribution function (c.d.f.) are most commonly used to characterize the distribution of any
random variable, and we shall denote these by f(-) and F(-), respectively:

p.d.f.: f(t)

F(0)=P(T'=0) {c.d.f. F(t) = P(T <t)

Because T is non-negative and usually denotes the elapsed time until an event, it is commonly characterized
in other ways as well:

Survivor Function

SH)=1-F(t)=P(T>t) for t>0

The survivor function simply indicates the probability that the event of interest has not yet occurred by
time ¢; thus, if T denotes time until death, S(t) denotes probability of surviving beyond time ¢. The right
tail of the distribution is the important component for the incorporation of right censoring, so it is more
convenient to concentrate on the survivor function in dealing with failure time distributions.

F(-) and S(-) are right continuous in ¢. For continuous survival time T, both functions are continuous in ¢.
However, even when F(-) and S(-) are continuous, the nonparametric estimators £'(-) and S(-) are discrete
distributions. For example, F (-) might be the cdf corresponding to the discrete distribution that weighted
wy,Wa, -+ ,Wg at certain times t1,%9, -+ ,t,. Thus, even though F(-) is continuous, its estimator ﬁ'() is
(only) right continuous. (See Kaplan-Meier)
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Hazard Function

t<T<t+h|T>t Pt<T<t+hT2>t)/h t
M) = lim p (STt 2ty g PUST<t+hT20/h_ J(O)
h—0+ h h—0+ P(T > t) S(tf)
with S(t7) = lir? S(u). The hazard function is a conditional density, given that the event in question has
u—t—
d d
not yet occurred prior to time t. Note that for continuous T', A(t) = % log[l — F(t)] = % log S(t)

Cumulative Hazard Function

Note that
S(t) = e 2
F(t) = A(t)e 0.

Other representations of the failure time distribution are occasionally useful. An example is the expected
residual life at time ¢ which uniquely determines a continuous survival distribution with finite mean:

JZ 0=t f()do _ [ S(v)dy
S(t) S(t)

r(t)=E(T —t|T >t) = (integral by parts)

With E(T) < oo implying that tli)m tS(t) =0,

E(T)=r(0)= S(v)dv
0
1 1 1 d > b dv >
= — = —= = — =——log Sw)dv = —z—log/ S(v)dv + logr(0)
r(0) fo S(v)dv r(t) dt 0 o r(v) o
r(0 b du
00 [
r(t) o T(u
1.1.2 T Discrete
If T is a discrete random variable taking values a; < ag < --- with pmf f(a;) = P(T = a;), the survivor
function is F((t) = > f(a;). The hazard at a; is defined as the conditional probability of failure at ai

jla;>t
given that the individual has survived to a;,

AMi=PT =T >a;)= é’f(tlz)) where S(a™) = tlim_ S(t)

Note that fot ¢t € [a;, a;11)
Sit)y=P(T >t)=P(T > a;)
(T > a1|T > G,Z‘,l)P(T > ai,l)
(T > CL1|T > ai_l)P(T > ai_1|T > ai_g)P(T > ai_g) s
J
= (=) A=) (1=M) =[] =x)

i=1

P
P
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Similarly, define f(a1) = A1,
j—1
flag)y =X T =2
k=1

The results are quite easily deduced by considering the failure time process unfolding over time and a sequence
of trials, each of which may or may not result in a failure.

1.1.3 T has Discrete and Continuous Component

S(t) = exp {— /Ot )\C(u)du} doa-x)

jla;<t

t
Alt) = / Ae(u)du + Z A; is a right-continuous nondecreasing function.
0 ilaj<t
Ai t=a;,1=12,---
dA() = At~ +dt) — At )=P[T €t t+d)|T >t]=<"" v T
®) ( ) ) [ [ ) } {)\C(t)dt otherwise.

The survivor function can be written as

F(t) = Pt[1—dA(u)], where the product integral is defined by P¢[1—dA(u)] = lim H 1 — [A(ug) — Alug—1)]
k=1

It is possible to examine survival experience by looking at the survival experience over each interval condi-
tional upon the experience to that point. It also underlies failure time analysis by counting processes and
martingales (Chapter 5), the construction of the likelihood under independent censoring (Section 6.2), the
construction of partial likelihood in the Cox model (Section 4.3), and the analysis of multivariate failure
times and life-history processes (Chapter 9).

With covariates  measured at the time origin of the study, we can then think of models for the corresponding
hazard function P T >
et t t,
At;x) = lim { bt + M) 2t z)
h—0 h

Note 1: Note that A(¢)dt = f(t) dt/S(t) =~ P(fail in [t,t 4 dt) | survive until ¢). Thus, the hazard function
might be of more intrinsic interest than the p.d.f. to a patient who had survived a certain time period and
wanted to know something about their prognosis.

Note 2: There are several reasons why it is useful to introduce the quantities A(t) and A(t):

e Interpretability: Suppose T' denotes time from surgery for breast cancer until recurrence. Then when
a patient who had received surgery visits her physician, she would be more interested in conditional
probabilities such as ”Given that I haven’t had a recurrence yet, what are my chances of having one
in the next year” than in unconditional probabilities (as described by the p.d.f.).

e Analytic Simplifications: When the data are subject to right censoring, hazard function representations
often lead to easier analyses. For example, imagine assembling a cohort of N men who just have turned
50 years of age and then following them for 1 year. Then if d of the men die during the year of follow-
up, the ratio d/N estimates the (discrete) hazard function of T' = age at death. We will see that A()
has nice analytical properties.
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e Modeling Simplifications: For many biomedical phenomena, T is such that A(t) varies rather slowly in
t. Thus, A(+) is well-suited for modeling.

Note 3: It is useful to think about real phenomena and how their hazard functions might be shaped. For
example, if T" denotes the age of a car when it first has a serious engine problem, then one might expect
the corresponding hazard function A(¢) to be increasing in ¢; that is, the conditional probability of a serious
engine problem in the next month, given no problem so far, will increase with the life of the car. In contrast,
if one were studying infant mortality in a region of the world where there was poor nutrition, one might
expect A(t) to be decreasing during the first year of life. This is known to be due to selection during the
first year of life. Finally, in some applications (such as when T is the lifetime of a light bulb), the hazard
function will be approximately constant in ¢. This means that the chances of failure in the next short time
interval, given that failure hasn’t yet occurred, does not change with ¢; e.g., a 1-month old bulb has the
same probability of burning out in the next week as does a 5-year old bulb. As we will see below, this ”lack
of aging” or "memoryless” property uniquely defines the exponential distribution, which plays a central role
in survival analysis.

1.2 Time origin, (Right) Censoring, Truncation

It is important to have a clear and unambiguous definition of the time origin from which survival is measured.
In some instances, time may represent age, with the time origin the birth of the individual. In other instances,
the natural time origin may be the occurrence of some event, such as randomization or entry into a study
or diagnosis of a particular disease. One would need to define carefully the clinical medical conditions that
correspond to failure (and eligibility for the study)

A common feature of survival data is the presence of right censored observations. A right-censoring mech-
anism is said to be independent if the failure rates that apply to individuals on trial at each time ¢t > 0 are
the same as those that would have applied had there been no censoring. We briefly review settings in which
right-censored data can arise and introduce notation to distinguish the underlying T" from what is actually
observed.

Type I Censoring Suppose that we “plug in” n bulbs at time 0, and then observe them for C' time units,
noting the times until burn out for those that burn out by time C. For the i*" bulb, let T% = true lifetime.
Note that we observe T; if and only if T; < C; otherwise, we know only that T; exceeds ¢ (right censored),
ie, Ty, , T, ~ i.i.d.F. But in general we observe only (7},9;) for i = 1,--- ,n where T;* = min(7;, C)

Type II Censoring Suppose instead that we “plug in” n bulbs, and then observe things until r (some
predetermined #) bulbs fail. Here we end up with r uncensored lifetimes and n — 7 censored (at time C')
lifetimes, but unlike Type I censoring, here r is a constant.

Random Censoring (commonly arising in biostat) Define C4,---,C,, constants and Ty, - , T, ~
i.0.d.F. Then suppose we observe (T7,01),- -, (1,5, 0p)

Key Assumption: Censoring is noninformative

The large majority of statistical methods for failure time data assume that censoring acts 'noninformatively’
of failure time. Loosely speaking, this means that being censored at time C' tells us only that T > C. In
terms of the potential censoring times C; , noninformative censoring is achieved if C; is independent of
T; , 5 =1,---,n; that is, if C; L T; . Mathematically weaker conditions have also been proposed and
investigated (Kalbfleisch & Prentice, p. 212-214).
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1.3 Estimation of the Survivor Function

1.3.1 Kaplan-Meier or Product Limit Estimator

We consider the nonparametric estimation of a survivor function S(-) based on n i.i.d. survival times that
can be noninformatively right censored. The resulting estimator — commonly known as the Kaplan-Meier
Estimator or the Product-Limit Estimator — is probably one of the most commonly-used estimators in
medical/public health studies involving failure time data.

Suppose that T, - - , T, are i.i.d. survival times with survivor function S(-), with C4,--- ,C,, the censoring
times, i.i.d. and independent of the T;, and suppose that our observations are denoted (77,4;). To begin,
let us suppose that F(-) is discrete with mass points at 0 < v; < vg < ---, and define the discrete hazard

functions Ay = P(T =wv1) and A\; = P(T = v;|T > v;_1)

Note that fot ¢t € [a;, a;11)

St)=P(T >t)=P(T >v)

P(T > U1|T > Uifl)P(T > Uifl)

P(T > UZ‘|T > Ui_l)P(T > ’Uz'_1|T > Ui_Q)P(T > ’Uz'_z) s
=1 -=A)A=Xic1) (1 —=A\) = H(l - i)

i=1

Similarly, define f(v1) = Ay,

j—1
fo) =X || (1= Ax)
k=1

Now consider making an inference about F based on the likelihood function corresponding to (77", d;) for
i=1,---,n. This is just

L(F)

II ra@n- I -ra)
T;:6;=1

: T;:8,=0
d; v;)—d;
H)‘j](l — )\j)Y( i) —d;
J

where 0 < h; <1 and
d; = Z(Si -I(T} = vj) = # who fail at v;
i=1

and
Y(vj) = ZI(T: > Uj) = # “at risk” at v;
i=1

. d:
The maximizing solution is seen to be h; = —*— (for Y(v;) > 0) so that

Y (v;)

t<wv
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Notice that the expression for 5\ makes sense: the probability of dying at v; given you are alive before is

d;
estimated by V) Also the expression for S(t (t) makes sense: the probability of staying alive at v, if alive
d.
before v; is estimated by 1 — —%—.
! Y (v;)

What if we didn’t know, in advance, the times at which F' had mass and did not necessarily want to assume
that it had to be discrete? The likelihood function is just as before; i.e.,

L=r(F) =T {rer n-ren "}

i=1
However, we now need to find the maximizing solution for F € F = {all cdf}

Kaplan and Meier argue that the maximizing solution must be a discrete distribution with mass on the
observed times T;* only. The same algebra as above leads to the same form of solution as above. Notice that
this means that the Kaplan-Meier estimator actually puts mass only on the observed failure times. That is,
the Kaplan-Meier (or Product-Limit) estimator of F(-) is

1 t<wv
Sit)y={ J
1— — v; <t <
741;[1( Y(UZ) ) J J+
where v; < vy < --- are distinct failure (uncensored) times. Thus, we can view S(:) as a nonparametric

MLE of F(-); this is sometimes denoted NPMLE. One equivalent representation of S (t) is given by:

50— ] (W) , for ¢ < max(v;)

jv; <t Y(vj

It is instructive to think about how the Kaplan-Meier estimator places mass at the observed failure times.
One way of gaining insight into this is by a construction of S(t) due to Efron (1967). This is known as the
‘Redistribution of Mass’ algorithm (for another algorithm, see Dinse 1985).

Step 1 Arrange data in increasing order, with censored observations to the right of uncensored observations
in the case of ties.

1
Step 2 Put mass — at each observation.
n

Step 3 Start from the smallest observation and move ‘right’. Each time a censored observation is reached,
redistribute its mass evenly to all observations to the right.

Step 4 Repeat Step 3 until all censored observations (except largest observations) have no mass. If largest
(vg) is censored, regard this mass as > v,.

Since S(-) is a nonparametric estimator of S (+), it follows that a nonparametric estimator of H(-) = — log[S(-)]

is given by H(t) = —log[S(t)] = — Z log(1 — h;) for v; << vjy1. However, for small z, log(1 — ) ~ —x
J. .

and thus this sum is approximately Z h;. This suggests the alternative estimator H(t) = > h; (for j > 1).

=1

This estimator is called the Nelson- Aalen estimator of H(-).

Next consider how we might approximate the distribution of S (t). One approach is to use the large-sample
properties of maximum likelihood estimators, assuming that such results apply in this setting (the usual
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regularity conditions do not hold here since the space we are maximizing over is not a finite-dimensional
parameter space).

- L()‘laA27 o ) = HA?](l — )\lj)y(vj)_dj

J

and hence
0%log L
_ - Lk
ON; 0N 7
782 logL  Y(vy;)
0X; Ai(1=Ay)
Because 5\1, 5\2, -+ are approximately uncorrelated, with approximate means Aq, Ao, -- and
. A=) dj(Y(vy)—dy)
Var(\,) ~ 22 j) _ 9 j J
! Y (v;) Y (v;)?

A J . N
Since S(t) is a product of terms of the form [](1 — A;) , it follows that S(¢) is approximately unbiased in
i=1
the discrete time setting.

The variance of Kaplan-Meier estimator: For v; <t < vj4q
Var[log S(t) Z Var{log(1 — \;)}

delta method N 1
n } Var(h) - ———
i=1 (1 - )‘i)Q

J d;
B ; Y (v;)(Y (v5) — d;)

Greenwood’s Formula: For v; <t < wvj4q

2

Var[S(t)] ~ Var[log S(t) [ p(log (1))
= 5(t)*Varllog 5(1)]
~ S(t)? Z d

— Y (v;)(Y(v;) — dj)
One use of Greenwood’s formula is to get an approximate confidence interval (e.g., a 95% CI) for S(¢). One
obvious choice is S(t) £ 1.961/Var[S(t)]. However, this could give limits that are greater than 1 or less than

0. One alternative is to note that log[— log S(t)] can take values in (—o0,00). Thus, using the delta method,
we can approximate the variance of log[—log S(t)] from Var[S(t)], resulting in

>
Var {log [f log S(t)} } ~ =L
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Given an approximate 95% CI for log [— log S (t)} we can re-express to get the corresponding CI for S(t).

Breslow and Crowley (1974) show that as n — oo,

Vn [S’() - S()] % zero mean Gaussian process

1.3.2 Life-Table and Related Estimates

A life table is a summary of the survival data grouped into convenient intervals. In some applications (e.g.,
actuarial), the data are often collected in such a grouped form. In other cases, the data might be grouped
to get a simpler and more easily understood presentation.

The data are grouped into intervals Iy,--- , I such that I; = (bg + -+ + bj_1,bo + --- + b;) is of width b;
with bg = 0. The life table then presents the number of failures and censored survival times falling in each
interval.

Suppose that m; censored times and d; failure times fall in the interval I, and let n; = " (d; + m;) be

1]
the number of individuals at risk at the start of the j** interval. The standard life-table estimator of the
d.
conditional probability of failure in I; given survival to enter I;, is §; = 1 if n; = 0 and ¢; = J ;
i— =
2

otherwise. The —Z term in the denominator is used in an attempt to adjust for the fact that not all the n;

individuals are at risk for the whole of I;. The corresponding life-table estimator of the survivor function at
the end I is

F(by+-+b) =] —a)

=1

m; -
Using Greenwood’s formula, with n; replaced by n; — 7j provides an estimator of the variance of F.

(needed to be updated)

1.4 Comparison of Survival Curves: Log-rank test

The log-rank test is the most commonly-used statistical test for comparing the survival distributions of two
or more groups (such as different treatment groups in a clinical trial). Assume that we have 2 groups of
individuals, say group 0 and group 1. In group j, there are N; i.i.d. underlying survival times with common
cdf denoted Fj(-), for j = 0,1. The corresponding hazard and survival functions for group j are denoted
Aj(+) and S;(-), respectively. As usual, we assume that the observations are subject to noninformative right
censoring.

We want a nonparametric test of Hy : Fy(-) = Fi(+); or equivalently, of Hy : So(-) = Si(-) or Hp : Ao(+) =
A1(+). If we knew Fy and Fy were in the same parametric family, then Hj is expressible as a point/region
in a Euclidean parameter space. However, we instead want a nonparametric test; that is, a test whose
validity does not depend on any parametric assumptions. It is intuitively clear that a UMP (Uniformly Most
Powerful) test cannot exist. Two options in this case are to select a directional test or an omnibus test.
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observed to fail at 7; at risk at 7;
group 0 | do; Yo(7;) — doj | Yo(75)
group 1 | dy; Yi(r;) —dy; | Ya(ry)

d; Y(rj)—d; | Y(7))

1.4.1 Log-rank test

Early work (1960s) in this area fell along 2 lines: (a) Modify rank tests to allow censoring (Gehan, 1965). (b)
Adapt methods used for analyzing 2 x 2 contingency tables to accommodate censoring (Mantel, 1966). We
introduce the log-rank test from the latter perspective as it easily includes tests developed from the former
and provides good insight into the properties of the log-rank test.

Log-rank test construction: Denote the distinct times of observed failures as 7 < --- < 7 and define
Y;(7;) = # persons in group ¢ who are at risk at 7; (¢ =0,1j =1,--- , k)
Y (7;) = Yo(7;) + Yi(7;) = # at risk at 7; (both groups)
d;; = # in group i who fail (uncensored) at 7; (i =0,1j =1,--- , k)
d; = doj + dy; = total # failures at 7;

The information at time 7; can be summarized in the following 2 x 2 table:

dos

Note: v (Oj ] can be viewed as an estimator of Ao(7;). Suppose Hy : Fy(-) = Fi(-) holds. Conditional on
ol7;

the 4 marginal totals, a single element (say d;;) defines the table. Furthermore, with this conditioning and

assuming Ho, dy; has the hypergeometric distribution; that is:

(DR
( Y (75) )

Yi(75)

Pld;; =d] = for d = max(0,d; — Yy(75)),- - ,min(d;, Y1(75)).

The mean and variance of di; under Hy are thus
Yl(T’))
E. = J d.
’ (Y(Tj) !

Y@ -Nm) (4 _ 4\ _ Yo(m)N()d; (Y (r;) — dj)
K Yl“)(ym»))(l Y(r») Y ()2 (Y (77) — 1)

Define O; = dy;. Fisher’s test would tell us to consider extreme values of d;; as evidence against Hy. Thus,
define

k k k
0= Z O; = total # failures in group 1E = Z E;V = Z V;
j=1 j=1

Jj=1

and let

Vo sy
J
approx

Then under Hy, it is argued that Z "% N(0,1) or 22 “PR \2

Question
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e While ; may be a conditional expectation for each j, it is not clear that E has such an interpretation.
Also, the creation of Z and its approximation as a N(0,1) r.v. suggests that the contributions from

each 7; are independent. Is this accurate? Then, is Z A N(0,1) under Hy?

e Note the similarity of the log-rank test to techniques for combining 2 x 2 tables across strata (e.g.,
cities).

e Note that the sequences Yo(71); Yo(72); Yo(73), -+ and Y1(71); Y1(72); Y1(73), - - are nonincreasing, and
as soon as one reaches 0 [e.g., Yy(75) = 0 at 75 = 18.7], it must follow that O; = E; and V; = 0 at and
beyond this time. Thus, we would get the same answer (i.e., Z) if the construction stopped at the last
time when both Yy(7;) and Yi(7;) are > 0.

e Although it is not obvious from the construction, the log-rank test is a directional test oriented towards
Ap(t
1®) = . We will see later that the log-rank

Ao(t)
statistic arises as a score test from a partial likelihood function for Cox’s proportional hazards model.

alternatives where S (t) = [So(t)]?, or equivalently, when

e While the heuristic arguments leading to the approximation of the null distribution of the log-rank
test seem reasonable, is the result correct? In addition, how does the test behave as a function of
the amount of censoring or the hazard functions in the two treatment groups? We return to these
important practical questions in later units.

1.4.2 Stratified Log-rank test

Stratified Log-rank test: Suppose that we have two groups (say, 2 treatments), as before, but that
we want to control (adjust) for a categorical covariate (e.g., gender). Then there are 4 = 2 x 2 types of
individuals. For example, their respective survivor functions might be as shown below. If we still want to
compare treatment groups, but also ’adjust’ for gender, a stratified log-rank test could be used. Suppose

Sj(-l)(~) denotes the survival function for group j in stratum [, and consider Hy : Sél)(~) = Sil)(-), l=1,---,L
Construction
1. Separate data into L groups, where : = # levels of the categorical covariates on which you want to
stratify (e.g., L = 2 when stratifying by gender)

2. Compute O, E,V (say, OV, E® V1 ) within each group, just as with the ordinary logrank
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