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2.1 Moments and Moment Inequalities

Let X be a random variable. If E[Xk] is finite, where k is a positive integer, then E[Xk] is called the k-th
moment of X or PX (the distribution of X). If E|X|a < ∞ for some real number a, then E|X|a is called
the ath absolute moment of X or PX . If µ = E[X] and E[X − µ]k are finite for a positive integer k, then
E[X − µ]k is called the k-th central moment of X or PX . If E|X|a <∞ for an a > 0, then E|X|t <∞ for
any positive t < a and E[X]k is finite for any positive integer k ≤ a.

Now assume further that X has finite second moments, i.e. each component of X has finite second moment,
which is the same as E[||X||2] <∞ of the second moment implies X has finite first moments, i.e. E[||X||] <∞
follows from the following calculation.

E[||X||] =

∫
Rn
||x||dPX(x) =

∫
{x:||x||<1}

||x||dPX(x) +

∫
{x:||x||≥1}

||x||dPX(x)

≤
∫
{x:||x||<1}

1dPX(x) +

∫
{x:||x||≥1}

||x||2dPX(x) ≤ P [||X|| < 1] + E[||X||2] <∞

In general, we say X has finite p’th moment, 0 < p <∞, if E[||X||p] <∞. If X has finite p’th moment, all
the smaller moments are also finite.

For sample mean, we could have empirical distribution P̂ =
1

n

n∑
i=1

δxi . E[X] =
∫

Ω
XdP =

∫
R xdPX(x).∫

xdP̂ (x) =
1

n

n∑
i=1

xi = x̄. For sample variance, s2 =
1

n

n∑
i=1

(xi − x̄)2 =
∫

(xi − x̄)2dP̂ (x)

2.1.1 Elementary Moment Bound

Proposition 2.1.1. Markov’s Inequality: Suppose X ≥ 0 a.s., then ∀ε > 0, P [X > ε] ≤ E[X]

ε

Note. P [X > ε] is a shorthand way to write P ({ω ∈ Ω : X(ω) > ε}), which is equal to (P ◦X−1)((ε,∞)).

There are many other inequalities that are trivial corollaries of this one, e.g. P [X > ε] ≤ E[X]

ε
. We will

give the proof in some detail, although it is really quite elementary. The student should be able to reproduce
the proof and completely justify each detail.

2-1



2-2 Lecture 2: Probability Measures on Euclidean Spaces

Proof.

E[X] =

∫ ∞
0

xdPX(x) (by Change of Variables)

=

∫
[0,ε)

xdPX(x) +

∫
[ε,∞)

xdPX(x) (by additivity of the integral as applied to x = I[0,ε)(x)x+ I[ε,∞)(x)x)

≥
∫

(ε,∞)

xdPX(x) (by integral monotonicity)

≥
∫

(ε,∞)

εdPX(x) (by integral monotonicity because I[ε,∞)(x)x ≥ I[ε,∞)(x)ε)

= εP [X > ε] (by linearity of integral and the fact that

∫
IAdP = P (A))

Proposition 2.1.2. Chebyshev’s Inequality: Suppose X is a r.v. with E[X2] < ∞. Let µ = E[X] and

σ2 = V ar[X]. Then then ∀k > 0, P [|X − µ| ≥ kσ] ≤ 1

k2

Proof. Apply Markov’s inequality to the r.v. (X − µX)2 with ε = (kσX)2

2.1.2 Convexity and Jensen’s Inequality

A set K ⊂ Rn is called convex iff for any finite subset {x1, x2, · · · , xm} ⊂ K, and ant real number p1, · · · , pm
with pi ≥ 0 ∀i, and

m∑
i=1

pi = 1. We have
m∑
i=1

pixi ∈ K. A linear combination with the coefficient settings above

is called a convex combination. Thus, a set K is convex iff it is closed under taking convex combinations.
Assuming m = 2, one can see geometrically that as p1 and p2 vary over values, the set of vectors p1x1 +p2x2

obtained is the line segment between x1 and x2. Thus, a set K is convex iff for every two points in K,
the line segment between the two points is contained in K. Let f : K → R where K is a convex subset

of Rn. Then f is called a convex function iff {x1, · · · , xm} ⊂ K and pi ≥ 0 ∀i and
m∑
i=1

pi = 1 implies

f

(
m∑
i=1

pixi

)
≤

m∑
i=1

pif(xi). We could replace the ≥ and ≤ , and we can get a strictly convex.

We wish to give an easily checked sufficient condition for convexity of a function, but some definitions are
needed first. Suppose g : Rn → R has continuous second order partial derivatives. The Hessian matrix

D2f(x) = H(x) is given by Hij =
∂2f

∂xi∂xj
where f(x + h) = f(x) + Df(x)h + o(||h||) as h → 0. o(||h||)

stands for a function c(h) s.t. lim
h→0

1

||h||
c(h) = 0.

Note that H is actually a mapping of n-vectors to n× n matrices. If B is an n×m matrix with (i, j) entry
Bij , the the transpose of B, denotes BT , is an m× n matrix obtained by interchanging rows and columns,
i.e. the (i, j) entry of BT is Bji. A n× n matrix A is symmetric iff AT = A, which is the same as Aij = Aji
for all i and j. Observe that our assumption of continuity of the second order partial derivatives of f implies

equality of mixed partials (i.e.
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
), and hence that the Hessian is symmetric. A symmetric

matrix A is called nonnegative definite (positive semi-definite) iff yTAy ≥ 0 for all n-vectors y. Note
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that yT is an 1× n matrix, and yTAy =
n∑
i=1

n∑
j=1

jiAijyj . A symmetric matrix A is called strictly positive

definite iff yTAy > 0 for all nonzero n-vectors y.

Partial order on symmetric matrices: A � B iff A − B is nonnegative definite, A � B iff A − B is strictly
positive definite.

Theorem 2.1.3. Suppose f : K → R where K ⊂ Rn is a convex open set and f has twice continuously
differentiable on K.

1. If the Hessian matrix H(x) � 0, nonnegative definite for all x ∈ K, then f is convex.

2. If the Hessian matrix H(x) � 0, strictly positive definite for all x ∈ K, then f is strictly convex.

Fix arbitrary x0 and x1 in K, and consider g(p) = (1− p)f(x0) + pf(x1) for p ∈ (0, 1). It suffices to check
that g is convex or strictly convex, which is a one dimensional problem. This illustrates a common theme
in convex analysis: general problems involving convex functions can often be reduced to problems involving
functions of a single real variable. A real valued function f defined on a convex set K is called concave if
−f is convex, and similarly f is strictly concave if −f is strictly convex.

Example 2.1.1. Some example of convex function

1. f(x) = ||x||p, x ∈ Rn, where p ≥ 1

2. f(x) = x−p, x ∈ (0,∞, where p ≥ 0

3. f(x) = exp(ax), x ∈ R

4. f(x) = xTQx, x ∈ Rn ,where Q is nonnegative definite

Some example of strictly concave function

1. f(x) = log x, x ∈ (0,∞)

2. f(x) = ||x||p, x ∈ Rn, where 0 ≤ p ≤ 1

Definition of the convex function can be interpreted probabilistically. Let X be a discrete random n-vector

with distribution given by P[X = xi] = pi i.e. Law[X] =
m∑
i=1

piδxi . This summation is a probability measure.

Then E[f(X)] =
m∑
i=1

pif(xi) ≥ f(E[X]) = f

(
m∑
i=1

pixi

)
, and we can get Jensen’s Inequality

Theorem 2.1.4. Jensen’s Inequality: Let f be a convex function on a convex set K ⊂ Rn and suppose
X is a random n-vector with E||X|| < ∞ and X ∈ K a.s. Then E[X] ∈ K and f(E[X]) ≤ E[f(X)].
Furthermore, if f is strictly convex and Law[X] is nondegenerate (i.e. X is not a.s. equal to a constant, or
equivalently Law[X] is not a unit point mass), then strict inequality holds in the above.

2.1.3 Covariance Matrix

Remark. Inner product spaces: a linear space L (over R) such that there is a scalar valued binary operation,
denoted 〈x, y〉, and satisfying:



2-4 Lecture 2: Probability Measures on Euclidean Spaces

1. symmetry: ∀x, y ∈ L, 〈x, y〉 = 〈y, x〉

2. bilinearity: ∀x1, x2, y ∈ L&∀a1, a2 ∈ R, 〈a1x1 + a2x2, y〉 = a1〈x1, y〉+ a2〈x2, y〉

3. positivity: ∀x ∈ L, x 6= 0 implies 〈x, x〉 = 0

There is a norm associated with an inner product: ||x|| =
√
〈x, x〉. An inner prodcut space which is complete

in the norm (all Cauchy sequences converge) is called a Hilbert space

Example 2.1.2. Let (Ω,F , µ) be any measure space. Define

L2(Ω,F , µ) = L2(µ) =

{
f : Ω→ R :

∫
f2dµ <∞

}
Let L be the linear space constructed from L2 by identifying functions that are equal µ-a.e. The inner
product on L is 〈f, g〉 =

∫
fgdµ. L2 is a Hilbert Space.

Theorem 2.1.5. Cauchy-Schwarz Inequality: For any r.v. X and Y , (E[XY ])2 ≤ E[X2]E[Y 2].
Assume the l.h.s. is finite. Then equality holds iff either X = 0 a.s. or Y = cX a.s. for some constant c.

Theorem 2.1.6. Holder’s Inequality: E|XY | ≤ (E|X|p)1/p
(E|Y |q)1/q

. Cauchy-Schwarz is a special
case of Holder’s Inequality.

Let X = (X1, ·, Xn) be a random n-vector with finite second moments. We have by Holder’s Inequality that

E|(Xi − µi)(Xj − µj)| ≤ E[(Xi − µi)2]E[(Xj − µj)2](1/2)

and

E[(Xi − µi)2] = V ar[Xi] = E[X2
i ]− µ2

i ∈ [0,∞)

, so (Xi−µi)(Xj −µj) is integrable. Assuming E[||X||2] <∞, we define the covariance matrix V = Cov[X]
by Vij = E[(Xi − µi)(Xj − µj)], 1 ≤ i, j ≤ n, or, in a more compact matrix notation,

V = E[(X − µ)(X − µ)T ].

Note that V is an n×n matrix with real (i.e. finite) entries. In fact, by the above |Vij | ≤
√
V ar[Xi]V ar[Xj ].

Also, one can further check that Cov[X] is symmetric and nonnegative definite. If A is any m × n matrix
and b ∈ Rm, then Cov[AX + b] = ACov[X]AT . If X is a random n-vector and Y is a random m-vector,
then the covariance between X and Y is

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])T ]

which is an n × m matrix. Cov[X] = Cov[X,X], and Cov[Y ,X] = Cov[X,Y ]T . If Z is the random
n+m-vector (X,Y ), then [

Cov[X] Cov[X,Y ]
Cov[Y ,X] Cov[Y ]

]
If Cov[X,Y ] = 0 (where the latter is a matrix of zeroes), then we say X and Y are uncorrelated. One
can show that if X and Y are independent then they are uncorrelated, provided both have finite second
moments, but the converse is false.

Now we introduce some matrix theory which is extremely useful in many areas of statistics. Recall that a
square matrix U is called orthogonal iff U−1 = UT . Assuming U is n × n, then U is an orthogonal matrix
iff the columns of U form an orthonormal basis for Rn . A square matrix D is diagonal if the off diagonal
entries are zero, i.e. Dij = 0 if i 6= j. It will be convenient to write D = diag[d], where d is the vector of
diagonal entries.
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Theorem 2.1.7. Spectral Decomposition of a Symmetric Matrix: Let A be a symmetric ma-
trix. Then there is an orthogonal matrix U and a diagonal matrix Λ s.t. A = UΛUT , where Λ =
diag(λ1, · · · , λn), λ1 ≥ · · · ≥ λn being the eigenvalues of A, and U = [u1, · · · , un], with u1, · · · , un being
corresponding unit eigenvectors.

Proposition 2.1.8. Suppose X is a random n-vector with finite second moments. Then there is an orthog-
onal matrix U such that Cov[UTX] is a diagonal matrix.

Proof. Since V = Cov[X] is symmetric there is an orthogonal matrix U and a diagonal matrix Λ such that
V = UΛUT . Then multiplying on the left by UT and on the right by U and using the defining property of
an orthogonal matrix, Λ = UTV U . The result now follows with A = U .

Assume X is a random n-vector with finite second moments and put µ = E[X], V = Cov[X]. Write
V = UΛUT , where U is orthogonal and Λ is diagonal, as in the proof of the last result. Since V is
nonnegative definite, the eigenvalues (which are the diagonal entries of Λ) are nonnegative. Assume that
the number of positive eigenvalues is r, so there are n− r zero eigenvalues. The null space of V (which is
defined to be the set of vectors x such that V x = 0) is given by

N(V ) = span[ur+1, · · · , un]

and the column space or range (which is defined to be {V x : x ∈ Rn}) is given by

R(V ) = span[u1, · · · , ur] =

{
r∑
i=1

aiui : ai ∈ R,∀i

}
Here, the span of a collection of vectors is the set of all linear combinations of the given collection, i.e. the
smallest linear subspace which includes the given collection. Also, r = rank(V ), the dimension of the range
of V , is known as the rank of the linear transformation V , and also the number of positive eigenvalues. Null

and vector spaces follow since any x ∈ Rn may be expanded as x =
n∑
i=1

(xTui)ui because {ui : 1 ≤ i ≤ n}

form an orthonormal basis for Rn. Thus,

V x =

n∑
i=1

(xTuix
Tui)V ui =

n∑
i=1

λi(x
Tui)ui =

r∑
i=1

λi(x
Tui)ui (2.1)

Thus, V x = 0 iff xTui = 0 for 1 ≤ i ≤ r, which is true iff x ∈ span[ur+1, · · · , un]. Also, y = V x for some
x ∈ Rn iff y has the form of the last expression in (2.1), which us true that iff y ∈ span[u1, · · · , ur]. Note

that in this latter case we may take y = V x where x =
r∑
i=1

λ−1
i (yTui)ui = V −y

Here, the last equation defines the linear transformation V −, which is known as the Moore-Penrose
generalized inverse of V . Note that V −y is just one of infinitely many x’s satisfying y = V x when

rank(V ) < n. If rank(V ) = n, i.e. V is nonsingular, then V − = V −1.

Proposition 2.1.9. If X is a random n-vector with E[||X||2] <∞, µ = E[X], and V = Cov[X], then

P[X ∈ R(V ) + µ] = 1

where R(V ) + µ = {(y) + µ : (y) ∈ R(V )}

Proof. Let Y +X−µ, so Y ∈ R(V ) iff X ∈ R(V )+µ. Write Y =
n∑
i=1

Yiui, Yi = Y Tui. Then Cov[X] =Cov[Y ]

and E[Y 2
i ] = uTi V ui = λi. Hence, E[Y 2

i ] = 0 iff i > r, which is equivalent to Yi = 0 a.s. iff i > r, hence

Y =
r∑
i=1

Yiui a.s. , which implies Y ∈ R(V )
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Proposition 2.1.10. Linear constraint in Rn: a ∈ Rn is fixed, b ∈ R is fixed, and x ∈ Rn variable,
aTx = b. B ⊆ Rn, B satisfies a linear constraint iff ∃a ∈ Rn, b ∈ R s.t. ∀x ∈ B, aTx = b. ∃n−1 dimensional
subspace of M s.t. B ⊆ V +M = {v + x : x ∈M}. e.g.

y

x

B

M + V

v

M

Claims if B satisfies a linear constraint aTx = b, a 6= 0, then mn(B) = 0

mn(B) =

∫
Rn
IB(x)dx =

∫
Rn−1

∫
R
IB(x1, y)dm(x1)dm(y).

a1x1 = b −
n∑
i=2

aixi, xi = a−1
i (b −

n∑
i=2

aixi,
∫
R IB(x1, y)dm(x1) = 0. That is, if Cox[X] = 0, then we can

take ant eigenvector of Cov[X] with eigenvalue 0, say un, uTn (X − µX) = 0 a.s. Thus, uTnX = uTnµX) is the
linear constraint a.s. and PX 6� mn

Proposition 2.1.11. Let X be as in the previous proposition. If PX = Law[X]� mn then rank[Cov[X]] =
n

Proof. If rank[V ] = r < n, then R(V ) is a proper linear subspace of Rn, and R(V ) + µ is a proper linear
manifold, i.e. a translate of a proper linear subspace. Such a set is closed, hence a Borel set, and we claim
its Lebesgue measure is 0. We have that R(V ) + µ ⊂ {x ∈ Rn : (x − µ)Tun = 0} ≡ B. Applying Fubini’s

theorem and the fact that mn = mn−1 ×m by definition, we have,

mn(B) =

∫
Rn
IB(x)dx =

∫
Rn−1

∫
R
IB(y, xn)dxndy



Lecture 2: Probability Measures on Euclidean Spaces 2-7

where y = (x1, · · · , xn−1). Now IB(y, xn) = 1 iff (xn − µn)unn = −
n−1∑
−i = 1(yj − µj)unj where um =

(u1n, · · · , unn) Assuming unn 6= 0, then for fixed y ∈ Rn−1, IB(y, xn) 6= 0 iff xn = µn − u−1
nn

n−1∑
i=1

(yi − µi)uin

which is only a single point. Hence, the inner integral
∫
Rn−1

∫
R IB(y, xn)dxndy is 0. If unn = 0, n is nonzero,

then some component of un is nonzero (since un is an element of an orthornormal basis for Rn), say unj 6= 0,
and then replace x in the integral with unj and y with the remaining components of x.

2.2 Characteristic and Moment Generating Functions.

2.2.1 General Results

Definition 2.2.1. The characteristic function of a random vector X is the complex valued functionφX :
Rn → C given by

φX(u) = E[exp(iuTX)] = E[cos(uTX)] + iE[sin(uTX)] = ψX(iu)

. The moment generating function is given by

ψX(u) = E[exp(uTX)], u ∈ Rn

We say that the m.g.f. exists in a neighborhood of 0 iff there is an ε > 0 s.t. ψX(u),∀u ∈ Rn s.t. ||u|| < ε.
Then it uniquely identifies PX

The ch.f. is defined and finite for all u ∈ Rn, since it is the expectation of a bounded continuous function
(or more simply, its real and imaginary components are bounded and continuous). In fact, |φX(u)| ≤ 1 for
all u ∈ Rn since | exp(it)| ≤ 1 for all t ∈ R. The m.g.f. is defined for all u but may be ∞ everywhere
except u = 0. Many of the results for ch.f.’s given in Chung or Ash for r.v.’s carry over to random vectors
as well, and also to the m.g.f. Some of the results of most interest to us are in the next proposition. Further
discussion and proofs may be found in Billinsgley, pp. 352-356.

Theorem 2.2.1. Let X be a random n-vector with ch.f and m.g.f.

1. (Continuity): φ is uniformly continuous on Rn, and ψ is continuous at every point u s.t. ψ(v) <∞
for all v in a neighborhood of u.

2. (Relation to moments): If X is integrable, then the gradient

∇φ =

(
∂φ

∂u1
, · · · , ∂φ

∂un

)
is defined at u = 0 and equals iE[X]. Also, X has finite second moments iff the Hessian D2φ(u) =
H(u) of φ exists at u = 0 and then H(0) = −E[XXT ]. If ψ is finite in a neighborhood of 0, then
E[||X||p] <∞ for all p ≥ 0. Further, ∇ψ(0) = E[X], and D2ψ(0) = E[XXT ].

3. (Linear Transformation Formulae): Let Y = AX + b for some m × n matrix A and some
m-vector b. Then for all v ∈ Rm,

φY (v) = exp(ivT b)φX(AT v)

ψY (v) = exp(vT b)ψX(AT v)
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4. (Uniqueness): If Y is a random n-vector and if φX(u) = φY (u) for all u ∈ Rn, then Law[X] =Law[Y ].
If both ψX and ψY are defined and equal in a neighborhood of 0, then Law[X] =Law[Y ]

Proof. (a) The result follows from the following inversion formula whose proof can be found, for
example, in Billingsley (1986, p. 395): for any a = (a1, · · · , ak) ∈ Rk, b = (b1, · · · , bk) ∈ Rk, and
(a, b] = (a1, b1]× · · · × (ak, bk] satisfying Law[X] (the boundary of (a, b]) = 0,

PX((a, b]) = lim
c→∞

∫ c

−c
· · ·
∫ c

−c

φX(t1, · · · , tk)

(−1)k/2(2π)k

k∏
i=1

e−itiai−e−itibi

ti
dti

(b) First consider the case of k = 1. From es|x| ≤ esx + e−sx, we conclude that |X| has an m.g.f. that
is finite in the neighborhood (−c, c) for some c > 0 and |X| has finite moments of all order. Using

the inequality |eitx[eiax −
n∑
j=0

(iax)j/j!]| ≤ |ax|
n+1

(n+ 1)!
, we obtain that

∣∣∣∣∣∣φX(t+ a)−
n∑
j=0

aj

j!
E[(iX)jeitX ]

∣∣∣∣∣∣ ≤ |a|
n+1E|X|n+1

(n+ 1)!

For any t ∈ R,

φX(t+ a) =

∞∑
j=0

φ
(j)
X (t)

j!
aj , |a| < c (2.2)

Similarly, (2.2) holds with φX replaced by φY . Under the assumption that ψX = ψY < ∞
in a neighborhood of 0, X and Y have the same moments of all order. φ

(j)
X (0) = φ

(j)
Y (0) for all

j = 1, 2, · · · , which and (2.2) with t = 0 imply that φX and φY are the same on the interval (−c, c)
and hence have identical derivatives there. Considering t = c − ε and −c + ε for an arbitrarily
small ε > 0 in (2.2) shows that φX and φY also agree on (−2c+ ε, 2c− ε) and hence on (−2c, 2c).
By the same argument φX and φY are the same on (−3c, 3c) and so on. Hence, φX(t) = φY (t)
for all t and, by part (a) ,PX = PY . Consider now the general case of k ≥ 2. If PX 6= PY , then by
part (a) there exists t ∈ Rk such thatφX(t) 6= φY (t). Then φtTX(1) 6= φtTY (1), which implies that
PtTX 6= PtTY . But ψX = ψY < ∞ in a neighborhood of 0 ∈ Rk implies that ψtTX = ψtTY < ∞
in a neighborhood of 0 ∈ R and, by the proved result for j = 1, PtTX = PtTY This contradiction
shows that PX = PY

5. Ch.f. for sums of independent r.v.’s: Suppose X and Y are independent random p-vectors and
let Z = X + Y . Then φZ(u) = φX(u)φY (u)

Proof. (b) Fort he second part of (b), assume the m.g.f. is defined in a neighborhood of 0, say ψ(u) <∞
for ||u|| < ε. If suffices to prove the result for p ≥ 2. For E[||X||p] < ∞ when p ≥ 2, it suffices for
E[||Xi||p] <∞, 1 ≤ i ≤ n, since by convexity

||X||p = n
p
2

(
1

n

n∑
i=1

X2
i

) p
2

≤ n
p
2

1

n

n∑
i=1

(X2
i )

p
2 = n

p
2

1

n

n∑
i=1

|Xi|p

Now ψXi(± ε
2 ) = E[exp(±εXi/2)] < ∞ by taking u = (±ε/2, 0, 0, · · · , 0). Since exponential functions

“grow faster” than power functions, there is some M > 0 such that |x|p ≤ exp(ε|x|/2) for all |x| > M .
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Hence,

E[|Xi|p] =

∫ ∞
−∞
|x|pdPXi(x)

≤
∫ −M
−∞

exp[−ε|x|/2]dPXi(x) +

∫ M

−M
|x|pdPXi(x) +

∫ ∞
M

exp[ε|x|/2]dPXi(x)

≤ ψXi(−ε/2) +Mp + ψXi(ε/2) <∞

We show that ∂ψ/∂u1 exists and can be computed by differentiation under the integral sign. (An
extension of this argument will show that ψ has partial derivatives of all orders on the interior of
{u : ψ(u) < ∞}, and can be computed by differentiation under the integral sign.) For simplicity,
assume n = 2. Fix u2 and let δ =

√
ε2 − u2

2. Then for |u1| < δ, ||u||2 = u2
1 + u2

2 < ε2. Now take any

δ0 < δ and δ1 ∈ (δ0, δ). Put g(x, u1) = exp[u1x1 + u2x2]. Then
∂

∂u1
g(x, u1) = x1 exp[u1x1 + u2x2].

Since the exponential exp[(δ1 − δ0)|x1|] “grows faster” than |x1| as |x1| → ∞, there is a constant
M > 0 s.t. |x1| ≤ M exp[(δ1 − δ0)|x1|] for all x1. Also, if |u1| < δ0, then 0 < exp[u1x1] < exp[δ0|x1|].
Combining these last two estimates we have∣∣∣∣ ∂∂u1

g(x, u1)

∣∣∣∣ = |x1 exp[u1x1 + u2x2]| ≤ (M exp[(δ1 − δ0)|x1|]) exp[δ0|x1|] exp[u2x2]

≤ G(x) = M(exp(δ1x1 + u2x2) + exp(−δ1x2 + u2x2))

We have used the fact that ea|t| ≤ eat+e−at for all a > 0 and all t ∈ Rin choosing a dominating function
G. Since δ0 < ε and δ2

1 + u2
2 < ε2, we have

∫
R2 G(x)dPX(x) = M [ψ(δ1, u2) + ψ(−δ1, u2)] <∞. By in-

terchange of differentiation and integral,
∂

∂u1
ψ(u) =

∂

∂u1

∫
g(x, u1)dPX(x) =

∫ ∂

∂u1
g(x, u1)dPX(x) =∫

x1 exp[u1x1 + u2x2]dPX(x). Hence,
∂ψ

∂u1
|u=0=

∫
x1dPX(x) = E[X1]. This shows one compo-

nent of the equation ∇ψ(0) = E[X], and the others follow similarly. A similar argument shows
∂2ψ

∂ui∂uj
=
∫
xixj exp[uTx]dPX(x), so the Hessian at u = 0 is E[XXT ]

A slight extension of the argument above can be used to prove the following theorem, which has many
applications in statistics. If z = x + iy is a complex number with x ∈ R and y ∈ R, then x = Real[z]
and y = Imag[z] are called the real and imaginary parts, respectively. If z ∈ Cn, i.e. z is an n-tuple
of complex numbers (or an n–vector with complex components), say z = (z1, · · · , zn), then Real[z] =
(Real[z1], · · · ,Real[zn]) is the vector of real parts, and similarly for Imag[z]. Recall that for D ⊂ Rn, the
interior of D is int[D] = {x ∈ D : B(x, ε) ⊂ D, ε > 0}, i.e. the points x in D for which an entire neighborhood
B(x, ε) of x (otherwise known as an ε ball centered at x) is contained in D. One can easily show that int[D]
is the largest open subset of D.

Now we briefly review some complex analysis. A complex valued function g of a complex variable (i.e.
g : C → C) is analytic at z ∈ C iff it is differentiable in a neighborhood of z. One remarkable result from
complex analysis is that a function which is analytic in an open set of C is in fact infinitely differentiable in
that open set. (See e.g. Ahlfors, Complex Analysis, pp. 120-122.) (Here, an open subset of C is the same
as an open subset of R2 when we identify C with R2 via x+ iy → (x, y). We will mainly consider a “strip”
of the form {x+ iy : −ε < x < ε,−∞ < y <∞} = {z ∈ C : |Real(z)| < ε}

Theorem 2.2.2. Suppose f : Ω → C is any bounded Borel function on a measure space (Ω,F , µ). Let
T : (Ω,F)→ (Rn,Bn) and let θ ∈ Cn. Let

B(θ) =

∫
Ω

f(ω) exp[θTT (ω)]dµ(ω)
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For 1 ≤ j ≤ n and (ξ1, · · · , ξj−1, ξj+1, · · · , ξn) ∈ Rj × Rn−j−1, define the set

Wj(ξ1, · · · , ξj−1, ξj+1, · · · , ξn) = {ξj ∈ R :

∫
Ω

f(ω) exp[ξTT (ω)]dµ(ω) <∞}

where ξ = (ξ1, · · · , ξj−1, ξj , ξj+1, · · · , ξn) ∈ Rn in the above. If θk ∈ W are fixed for k 6= j, then B is an
analytic function in {θj : Real[θj ] ∈ int[Wj ]}, where Wj is sa given above with ξk = Real[θk] for k 6= j.
Further, any order partial derivative of B can be computed by differentiation under the integral sign

Remark. 1. The fact that Real[θj ] ∈ int[Wj ] allows us to use a dominating function as in the proof of
Theorem 2.2.1 (b) above.

2. Another remarkable fact from complex analysis is the following: Suppose f and g are both analytic
functions in the open strip {z ∈ C : |Real(z)| < ε}, and that {zn : n ∈ N} is an infinite sequence of
distinct values which converges to a limit in the strip, say zn → z with |Real(z)| < ε. Then if g(zn) =
f(zn) for all n, we have f = g everywhere on the strip. Now suppose X is a r.v. with ψX(u) < ∞
for all |u| < ε. Then ψX can be extended to an analytic function in the strip {z : |Real(z)| < ε},
which contains the imaginary axis. (This is an example of analytic continuation, which is discussed at
length in Ahlfors, p. 285 ff.) Hence, φX(u) = ψX(iu) by the previous theorem. Note that under these
conditions, it is possible to obtain a stronger uniqueness condition than in Theorem 2.2.1 (d), namely
if both ψX(u) <∞ and ψY (u) <∞ for all |u| < ε, and ψX(zn) = ψY (zn) for any distinct sequence of
complex numbers in the strip {z : |Real(z)| < ε} with a limit in that strip, then Law[X] = Law[Y ].

3. Another useful fact about analytic functions is that they can be expanded in power series, i.e. suppose
g is a complex function of a complex variable and ρ > 0 is such that g is analytic in the disk (or “ball”)
{z ∈ C : |z − z0| < ρ}. Then

g(z) =

∞∑
j=0

1

j!
g(j)(z0)(z − z0)j , for |z − z0| < ρ

Further, derivatives of g may be computed by differentiating under the summation sign, for |z−z0| < ρ.
Using this fact along with Theorem 2.2.2, one can show that if X is a r.v. with ψX(u) < ∞ for all
|u| < ε, then

ψX(u) =

∞∑
r=0

drψX
dur

(0)
1

r!
ur =

∞∑
r=0

1

r!
E[Xr]ur

Thus, we can read off the moments of X from the power series expansion of the m.g.f.

Now we consider the multivariate case with a random n-vector X. First, we will introduce some
notations that will make it easier to present the material. An n–vector r with nonnegative integer
components is called a multi–index i.e.r = (r1, r2, · · · , rn) with each ri ∈ N. We can use a “vector”
exponential notation for a monomial as in

xr =

n∏
j=1

x
rj
j

where x ∈ R . Thus, by analogy with the univariate case, we may call

µr = E[Xr] = E

 n∏
j=1

x
rj
j
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the r-th moment of the random n–vector X. The “multi-index” factorial is defined by

r! =

n∏
j=1

rj !

The order of the multi-index r is

|r| =
n∑
j=1

rj

We can also define an r-th order derivative by

Dr =
∂|r|

n∏
j=1

∂u
rj
j

Note that this is a partial differential operator of order |r|. With these notations, one can show that
the power series expansion about 0 for a complex function g of n complex variables which is analytic
in each variable is given by

g(z) =
∑
r

1

r!
Drg(0)zr

Thus, if X is a random n-vector with ψX <∞ for all ||u|| < ε, then

g(z) =
∑
r

1

r!
DrψX(0)ur =

∑
r

1

r!
E[Xr]ur

where the series converges in a neighborhood of u = 0.

4. Let X and ψX be as in part (b). Consider the cumulant generating function given by

K(u) = logψX(u)

Then the r-th cumulant of X is

κr =
∂|r|K
n∏
j=1

∂u
rj
j

(0) = DrK(0)

One can show by comparison of the terms of the power series that if n = 1, then

κ0 = 0, κ1 = E[X], κ2 = V ar[X]

For higher dimensional random vectors, we still have κ0 = 0, and

E[Xi] = κr, with ri = 1 and rj = 0 if j 6= i.

Also, if V = Cov[X], then

Vij = κr, with ri = rj = 1 and rk = 0 if k 6= i or k 6= j
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2.3 Common Distributions Used in Statistics

2.3.1 Statistical Models:

We assume our data (typically a matrix) are obtained as a realization of a r.v. X, called the observable,
taking values in a space Ξ (typically a finite dimensional vector space). The model is a family of probability
measures P = {Pθ : θ ∈ Θ}, which are the possible distributions for X. Here, Ξ is called the observation
space. If, for example, X is an n × m matrix of n observations with m variables each, then Ξ = R(n×m)

(Note our notation for the linear space of n × m matrices.) We will often treat it as an nm dimensional
vector, e.g., by “stacking” the columns or rows. Θ is called the parameter space. In fact, this framework
includes so-called nonparametric models. For example, if X1, · · · , Xn are assumed to be i.i.d. univariate
with unknown c.d.f. F , then we may take Θ as the family of c.d.f.s and Pθ is the n-fold measure product of
the distribution determined by the c.d.f. θ. Think of θ as just a label for a possible distribution of X.

Definition 2.3.1. With this kind of mapping, θ → Pθ, called parametrization, we will generally require
our model to be identifiable by which we mean that if θ1 6= θ2, then Pθ1 6= Pθ2 .

With this formulation, we think of a true parameter value θ, i.e. the one which actually generates the data.
We will typically denote this as θ∗. Then “statistical inference” is about making inferences about θ∗.

Note that Pθ1 6= Pθ2 means for some measurable set A, Pθ1(A) 6= Pθ2(A). In general, we want to use only
identifiable parameterizations. If the parameter is not identifiable there will be differences in parameter values
which are not statistically meaningful since we cannot determine them from the distribution of the observable.
In general, if we have a nonidentifiable parameterization, we will reparametrize to obtain identifiability.

Definition 2.3.2. We call a model a dominated family if there is a σ-finite measure µ such that for all

θ ∈ Θ, Pθ � µ. We denote the densities (w.r.t. µ) by fθ(x) or f(x|θ) equals to
dPθ
dµ

(x). If we treat the

parameter θ as a realization of a r.v., denoted ϑ, as suggested by the notation f(x|θ), then Pθ is (a version
of) the conditional distribution of X given ϑ = θ.

If x is the observed value of X, then L(θ|x) = f(x|θ) is the likelihood. Much of statistical inference is based
on likelihoods. Most of the methods we will develop depend on the likelihood - that is, data sets that give
the same likelihood will give the same inference. Often the data will take the form (xi, yi) where we are
interested in developing a “predictive model” which is a function of x that can be used to predict a y when
we observe a new x-value. In this case, the statistical model will typically treat the y’s as random and the
x’s as nonrandom (or having a degenerate distribution at the observed value within each pair). This is the
framework of regression modeling in statistics. We will then think of our inference problem as not about the
distribution of the Y ’s but the conditional distribution of a Y given X = x.

2.3.2 Exponential Families

Definition 2.3.3. A dominated family P = {Pθ : θ ∈ Θ} � µ with µ σ–finite is called an exponential family
iff the densities w.r.t. µ can be written in the form

fθ(x) = exp[η(θ)TT (x)−B(θ)]h(x)
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where

η : Θ→ Rp

B : Θ→ R
T : (ξ,G)→ (Rp,Bn)

h : (ξ,G)→ (R,B)

and B(θ) is the normalizing constant in logarithmic form B(θ) = log
∫

Ξ
exp[η(θ)TT (x)]h(x)dµ(x)

Example 2.3.1. Let P be the normal family on R, {N(µ, σ2) : µ ∈ R, σ2 > 0}. Then µ = m, Lebesgue
measure, may be taken as the dominating measure and this is σ–finite. The density may be written in the
form

fµ,σ2(x) =
1√

2πσ2
exp

[
− 1

2σ2
(x− µ)2

]
= exp

[
− 1

2σ2
x2 +

µ

σ2
x−

(
µ2

2σ2
+ log σ

)](
1√
2π

)
where

η(µ, σ2) =

(
1

2σ2
,
µ

σ2

)
B(µ, σ2) =

µ2

2σ2
+ log σ

T (µ, σ2) = (x2, x)

h(x) =
1√
2π

Definition 2.3.4. Given µ ∈ Rn and V an n× n nonnegative definite matrix, let N(µ, V ) denote the Borel

probability measure on Rn with m.g.f ψ(u = exp

[
µTu+

1

2
uTV u

]
Example 2.3.2. (Gamma Distribution): Gamma(α, β), α, β > 0, Γ(α) =

∫∞
0
xα−1exdx

fα,β(x) =
1

Γ(α)βα
xα−1 exp

(
−x
β

)
= exp

{
α log(x) +

−1

β
− [α log β + log Γ(α)]

}
[x−1I(0,∞)(x)]

η(α, β) =

(
α,
−1

β

)
B(α, β) = α log β + log Γ(α)

T (x) = (x, log x)

h(x) = x−1I(0,∞)(x)

Gamma(1, β) is exponential distribution Exp(β), also an exponential subfamily of the Gamma family.

Remark. 1. A dominated family P = {Pθ : θ ∈ Θ} � µ with µ σ–finite. (X1, · · · , Xn) are i.i.d. with
common distribution from P, then X = (X1, · · · , Xn) has a distribution from an exponential family
dominated by µn with densities

fθ(x) = exp[η(θ)T T̃ (x)− B̃(θ)]h̃(x)
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where

B̃(θ) = nB(θ)

T̃ (x) =

n∑
i=1

T (x1)

h̃(x) =

n∏
i=1

h(xi)

2. By changing dominating measures, we can take h(x) ≡ 1. Define a new dominating measure ν by
dν

dµ
= h. We claim the ν is σ-finite. Fix θ ∈ Θ, define Bm =

{
x : exp[η(θ)TT (x)−B(θ)] ≥ 1

m

}
. We

have
⋃
m
Bm = Ξ, so

ν(Bm) =

∫
Bm

h(x)dµ(x) ≤ m ·
∫
Bm

exp[η(θ)TT (x)−B(θ)]h(x)dµ(x)

≤ mPθ(B) ≤ m

Now, for all θ and A measurable,

Pθ(A) =

∫
A

exp[η(θ)TT (x)−B(θ)]h(x)dµ(x)

=

∫
A

exp[η(θ)TT (x)−B(θ)]dµ(x)

We have
dPθ
dν

(x) = exp[η(θ)TT (x)−B(θ)] which is an exponential family with h ≡ 1. For convenience,

we will often delete the factor h(x) when writing the density in an exponential family. We need to
determine the new dominating measure ν in the previous examples which causes h to disappear.

3. Note that the density exp[η(θ)TT (x) − B(θ)] is strictly positive, so we conclude that in general, the
region where the density is positive is not dependent on the parameter θ. A family we consider
below which is related to the Exp(β) family is the Exp[a, b] distribution has Lebesgue density given

by fa,b(x) =
1

a
exp

(
−(x− b)

a

)
, x ≥ b. Here the parameter a is required to be positive and b is an

arbitrary real number. Since the density is positive exactly on the set [b,∞), it follows that this family
is not an exponential family.

4. Let Λ = η(Θ), then Λ ⊂ Rp and η ∈ Λ may be used as parameter rather than θ since the actual

probability measure only depends on ηTT (x). We have the canonical form

fη(x) = exp[ηTT (x)−A(η)]

. A(η) = log
(∫

Ξ
exp[ηTT (x)]dµ(x)

)
is a normalizing constant. The new parameter η is called the

natural parameter. If the natural parameterization is used, then we call the family a natural parameter
exponential family or a canonical form exponential family. It is of course required that A(η) be finite
to define a probability density, but it is obviously also sufficient. The natural parameter space Λ0 is
the largest possible parameter space for the natural parameter

Λ0 = {η ∈ Rp : 0 <

∫
Ξ

exp[ηTT (x)]h(x)dµ(x) <∞}

= {η : −∞ < A(η) <∞}

An exponential family in canonical form with the natural parameter space is called a natural
exponential family.
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5. The canonical form representation is not unique. Indeed, let D be any nonsingular p × p matrix and
put η̃ = (D−1)T η, T̃ (x) = DT (x), then ηTT = ηTD−1DT = [(D−1)T η]T (DT ) = η̃T T̃ and we may use

the new parameter η̃ in place of η provided we switch from T to T̃ (x)

6. If the parameter space Λ ⊂ M where M is a linear manifold in Rp with dim(M) = q < p, then
the natural parameter satisfies p − q independent linear constraints. (To wit, CT η = CT ζ where C
is a p × (p − q) matrix with columns orthogonal to M − ζ and ζ is any element of M . Note that
M − ζ is a q-dimensional linear subspace since it contains 0, and is the unique such subspace parallel
to M .) Then there is a p × q matrix B such that for any ζ ∈ M , there is for each η ∈ Λ a unique

η̃ ∈ Rq such that η = Bη̃ + ζ, and we will denote by Λ̃ the set of all such η̃. (Here, B may be taken
as any matrix whose columns span M − ζ, and then the entries in η̃ are just the coefficients in the

expansion of η − ζ using the basis consisting of the columns of M .) Then ηTT = η̃T (BTT ) + ζTT . so

fη(x) = exp[ηTT (x)−A(η)] = exp[η̃T T̃ (x)− Ã(η̃)]h̃(x) where T̃ (x) = BTT (x) ∈ Rq, Ã(η̃) = A(Bη̃+ζ)

and h̃(x) = exp[ζTT (x)]. Note that η̃ does not appear in h̃(x). Thus, we may reparametrize and reduce
the dimension of η and T so that Λ does not belong to any proper linear manifold.

Similarly, suppose T satisfies p − q linear constraints, i.e. if there is a q-dimensional linear manifold
M of dimension q < p, Pη{x : T (x) ∈ M} = 1, there is a p × (p − q) matrix C and a ζ ∈ Rp s.t.

Pη{x : CTT (x) = CT ζ} = 1. Note that if this happens for one η then it happens for all η since the
set where fη > 0 doesn’t depend on η. Now let B be a p × q matrix with columns spanning M and

τ ∈ M , then T = BT̃ + τ for a unique T̃ ∈ Rq and we may reparametrize with η̃ = BT η and reduce
dimensionality again and T̃ will not satisfy any linear constraints (i.e. not be confined to a proper
linear manifold in Rq). Note that even though η was not constrained here, we have lost nothing since
if (η1 − η2) is orthogonal to M − τ , we have ηT1 T = ηT2 T µ–a.e. where µ is the dominating measure,
i.e. the original parameterization was not identifiable.

In conclusion, we can always reduce an exponential family in canonical form so that neither the parameter
η nor the T satisfies any linear constraints. We say the family is minimal. If the parameter space of a
minimal exponential family (in canonical form) has nonempty interior (i.e. the parameter space contains a
nonempty open set, such as an open rectangle (a1, b1)× · · · × (ap, bp) where ai < bi for 1 ≤ i ≤ p),then the
family is said to be of full rank.

Definition 2.3.5. The Frobenius norm of A is ||A|| =

(
n∑
i=1

m∑
j=1

A2
ij

)1/2

Proposition 2.3.1. For any matrices A and B, ||AB|| ≤ ||A||||B||, provided AB is defined. In particular,
if x is a vector of appropriate dimension, ||Ax|| ≤ ||A||||x||.

Proposition 2.3.2. Suppose {fη : η ∈ Λ0} is a natural exponential family which is minimal.

1. The natural parameter space Λ0 is a convex subset of Rp and the family is full rank.

Proof. Assume η1, η2 ∈ Λ0 and put η = αη1 + (1− α)η2 for some α ∈ [0, 1]. The exponential function
is convex, so exp[αηT1 T + (1 − α)ηT2 T ] ≤ α exp[ηT1 T ] + (1 − α) exp[ηT2 T ]. Taking integrals w.r.t. the
dominating measure (and noting that the integrands are positive, so the integrals exist) gives∫

Ξ

exp[ηTT (x)]dµ(x) ≤ α
∫

Ξ

exp[ηTT ]dµ(x) + (1− α)

∫
Ξ

exp[ηTT ]dµ(x)

Thus, finiteness of the two integrals on the r.h.s. implies finiteness of the integral on the l.h.s., i.e. that
η is in Λ0 and hence that Λ0 is convex.

To show that the family is full rank, it is only necessary to show that the natural parameter space
has nonempty interior (since we know by minimality that T does not satisfy any linear constraint).
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Since the canonical parameter η does not satisfy any linear constraints, we know that Λ0 does not
lie in a lower dimensional linear manifold. Thus, we can find p + 1 vectors η

0
, · · · , η

p
such that

{η
1
−η

0
, η

2
,−η

0
, · · · , η

p
,−η

0
} forms a linear independent set of p-dimensional vectors. We will assume

without loss of generality that η
0

= 0 by subtracting η
0

from every other η.

K =


p∑
j=0

ajηj : aj ≥ 0, 0 ≤ j ≤ p&
p∑
j=0

aj = 1


η̃ = (p+ 1)

p∑
j=0

ajηj

Of course, η̃ ∈ K, and our goal is to show that for some ε > 0, ||η − η̃|| < ε implies η ∈ K,
i.e. that η̃ has a neighborhood contained in K, so K has nonempty interior. Now any η ∈ Rp

can be written as η = η̃ +
p∑
j=1

bjηj , where b = (b1, · · · , bp) can be found by solving Ab = η − η̃

where A is the p × p matrix with j-th column equal to η
j
. We know that A is invertible, so by

Proposition 2.3.1, ||b|| ≤ ||A−1||||η − η̃||. Now in order to guarantee that η is in K we need that

aj = (p + 1)−1 + bj , 1 ≤ j ≤ p, and a0 = (p + 1)−1 −
p∑
j=1

bj are nonnegative since they already sum

to 1. For this it suffices that max
1≤j≤p

|bj| ≤ (p + 1)−1 and
p∑
j=1

|bj | ≤ (p + 1)−1. Now max
1≤j≤p

|bj| ≤ ||b||

and using Cauchy-Schwartz, it is easy to see that
p∑
j=1

|bj | ≤ p1/2||b||. Hence, as long as we make

||b|| < min{p−1/2(p+ 1)−1, (p+ 1)−1} = p−1/2(p+ 1)−1, then we will satisfy our requirements on b so
that η ∈ K. Thus, it suffices to take ε = ||A−1||−1p−1/2(p+ 1)−1

2. If η0 is an interior point of Λ0 (i.e. there is some open ball B(η0, ε) ⊂ Λ0, where the radius ε > 0),
then the m.g.f. ψη0 of Lawη0 [T (X)] is finite in a neighborhood of 0 and is given by

ψη0(u) = exp[A(η0 + u)−A(η0)]

and the cumulant generating function is κη0(u) = A(η0+u)−A(η0). In particular, Eη0 [T (X)] = ∇A(η0)
and Covη0 [T (X)] = D2A(η0). Furthermore, A(η) is a strictly convex function on the interior of Λ0.

Proof. For the m.g.f. calculation, we have

ψη0(u) = Eη0 [exp(uTT (X))] =

∫
Ξ

exp[uTT (X) + ηT0 T (x)−A(η0)]dµ(x)

=

∫
Ξ

exp[(u+ η0)TT (X)−A(u+ η0)]dµ(x) exp[A(u+ η0)−A(η0)]

= exp[A(u+ η0)−A(η0)]

where this is valid provided u + η0 is in Λ0. Since there is a neighborhood of η0 contained in Λ0, it
follows that there is a neighborhood of 0 such that if u is in this neighborhood of 0, then u+ η0 is in
the neighborhood of η0 contained in Λ0, and everything in the last displayed calculation is finite, i.e.
ψη0 is finite in a neighborhood of 0. The formula for kappa is immediate and the formulae for the first
two moments of T under η0 follows by an elementary calculation. Since the family is minimal, T is not
almost surely confined to some proper linear manifold of Rp, so by Proposition 2.1.8, the covariance is
full rank, i.e. positive definite. This shows that A(η) is strictly convex by the second derivative test.
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Eη0 [T (X)] = ∇ψη0(0) = ∇u exp[A(u+ η0)−A(η0)] |u=0

= (∇A(u+ η0) exp[A(u+ η0)−A(η0)]) |u=0= ∇A(η0)

Eη0 [T (X)T (X)T ] = D2ψη0(0) = D{DA(u+ η0) exp[A(u+ η0)−A(η0)]} |u=0

= (D2A(u+ η0)) exp[A(u+ η0)−A(η0)] |u=0

+ [∇A(u+ η0)][∇A(u+ η0)]T exp[A(u+ η0)−A(η0)] |u=0

= D2A(η0) + (∇A(η0))(∇A(η0))T = D2A(η0) + E[T (X)]E[T (X)]T

=⇒ Covη0 [T (X)] = D2A(η0)

3. Under the same hypotheses, if φ : Ξ→ R is such that Eη[φ(X)] <∞, then the function h(η) = Eη[φ(X)]
is finite in a neighborhood of η0. Furthermore, h is infinitely differentiable and the derivatives may be
computed by interchange of differentiation and integration.

Proof. We apply Theorem 2.2.2. For the bounded function f(x) = I[0,∞)(φ(x))−I(−∞,0)(φ(x)) and for
the measure µ̃ in Theorem 2.2.2, use dµ̃(x) = |φ(x)dµ(x)|. Note that f(x)|φ(x)| = φ(x). Then apply
that theorem to B(η) =

∫
Ξ
f(x) exp[ηTT (X)]dµ̃(x). Infinite differentiability of B at an interior point

of Λ0 implies the same for h, and the interchangeability of the differentiation and integration operators
follows as well.

Example 2.3.3. Gamma distribution Gamma(α, β)

fα,β(x) =
xα−1

βαΓ(α)
exp(−x/β)I[0,∞)(x)

= exp

[
−1

β
x+ α log x− (α log β + log Γ(α))

]
h(x)

η = (−1/β, α), T = (X, logX), A(η) = −η2 log(−η1) + log Γ(η2), thus,

ψη(u1, u2) = Eη[exp{u1X + u2 logX}]
= exp[−(η2 + u2) log(−(η1 + u1)) + log Γ(η2 + u2) + η2 log(−η1)− log Γ(η2)]

= exp

[
η2 log

(
η1

η1 + u1

)
+ u2 log(−(η1 + u1)) + log

Γ(η2 + u2)

Γ(η2)

]
= exp

[
α log

(
−1/β

−1/β + u1

)
+ α log

(
1

β
− u1

)
+ log

(
α+ u2

α

)]
= exp

[
−α log(1− βu1) + α log

(
1− βu1

β

)
+ log

(
1 +

u2

α

)]

Eη[T (X)] = ∇A(η) =

(
−η2

η1
,− log(−η1) +

Γ′(η2)

Γ(η2)

)
= (αβ, log β + ψ(α)) where ψ(α) is the digamma func-

tion. Cov[T (X)] =


η2

η2
1

−1

η1
−1

η1
ψ(1)(η2)

 =

[
αβ2 β
β ψ(1)(α)

]
, where ψ(1) is the trigamma function.

Example 2.3.4. Multinomial Family: Suppose Ω is partitioned into A1, · · · , Ak. Let pi be the prob-
ability of the Ai has nonnegative entries which sum to 1. Let X = (IA1 , · · · , IAk) be the random indicator
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k-vector. Then the i-th entry of X is 1 if the outcome is in Ai, and the other entries of X are 0. Now
let X1, · · · , Xn be i.i.d. with the same distribution as X, and let Y =

∑
Xi. Thus, Yi is the number of

times Ai occurs in the n trials. Then Y has a multinomial distribution with parameters Mult(n, p). As the

parameter n is always known (since
∑
Yi = n), we only show p in the probabilities, etc. Pp[Y = y] =

(
n
y

)
py

where y is a k-multi-index satisfying
k∑
i=1

yi = n. Also,
(
n
y

)
=
n!

y!
=

n!
k∏
i=1

yi!

is a multinomial coefficient and

py =
k∏
i=1

pyii is the monomial. Now if we take as dominating measure the discrete measure

µ =
∑
y

(
n

y

)
δy

then the density of Mult(n, p) is fp(y) = py = exp

[
k∑
i=1

yi log(pi)

]
, provided it is known pi 6= 0 for all i. This

is an exponential family with natural parameters ηi = log(pi) and T = y, but T satisfies the linear constraint
k∑
i=1

yi = n and the ηi satisfy the nonlinear constraint
∑

exp[ηi] = 1. There are many ways of eliminating this

indeterminacy, but the most common is to use T = (y
1
, . . . , y

k−1
) (i.e. leave off the last component which is

determinable from the other components and multinomial coefficient), and form the multinomial logit

ηi = log

 pi

1−
k−1∑
j=1

pj

 , 1 ≤ i ≤ (k − 1)

Note that given any probability vector p one can obtain a (k−1) vector η, and conversely given any η ∈ Rk−1,
one can obtain the corresponding probability vector through

pk =
1

1 +
k−1∑
j=1

exp[ηj ]

, pi = pk exp[ηi], 1 ≤ i ≤ (k − 1)

Note that the multinomial logit η is an unconstrained vector in R(k − 1) whereas the probability vector p
is a k-vector which satisfies the constraints of nonnegativity and

∑
pi = 1. The multinomial density can be

written as

fp(y) = exp

k−1∑
i=1

yi log(pi) +

(
n−

k−1∑
i=1

yi

)
log

1−
k−1∑
j=1

pj


= exp

k−1∑
i=1

yi

log(pi)− log

1−
k−1∑
j=1

p− j

+ n log

1−
k−1∑
j=1

pj


= exp

k−1∑
i=1

yiηi − n log

1 +

k−1∑
j=1

exp[ηi]


which is an exponential family in canonical form with

A(η) = n log

1 +

k−1∑
j=1

exp[ηi]
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. But, (log p1, · · · , log pk) does not satisfy the linear constraint and then the family is not minimal. From
this in conjunction with Proposition 2.3.2, we have for 1 ≤ i < k,

Ep[Yi] =
n exp[ηi]

1 +
k−1∑
j=1

exp[ηi]

= npi

and since Yk = n −
k−1∑
j=1

Yj , Ep[Yk] = n −
k−1∑
j=1

Ep[Yj ] = n −
k−1∑
j=1

npj = n

[
1−

k−1∑
j=1

pj

]
= npk. Also, if

1 ≤ i < j ≤ k and 1 ≤ i < k respectively, then

Covp[Yi, Yj ] =
∂2

∂ηi∂ηj
A(η) =

−n exp[ηi] exp[ηj ](
1 +

k−1∑
m=1

exp[ηm]

)2 = npipj

V arp[Yi] =
∂2

∂2ηi
A(η) =

n

[
exp[ηi]

(
1 +

k−1∑
j=1

exp[ηj ]

)
− exp[2ηi]

]
(

1 +
k−1∑
m=1

exp[ηm]

)2 = n(pi − p2
i ) = npi(1− pi)

2.3.3 Location-Scale Families

Definition 2.3.6. Let P be a Borel p.m. on R.

1. The location family generated by P is {Pb : b ∈ R} where Pb(A) = A− b and A− b = {x− b : x ∈ A}.
Note that if τ−1

b : R → R is transition by b i.e. τb(x) = x + b, then Pb = P ◦ τ−1
b , i.e. if Z ∼ P then

τb(Z) = Z + b ∼ Pb

2. The scale family generated by P is {Pa : a > 0} where Pa(A) = P (a−1A) and a−1A = {a−1x : x ∈ A}.
Note that if ς−1

b : R→ R is multiplication by a i.e. ςa(x) = ax, then Pa = P ◦ ςa, i.e. if Z ∼ P then
ς−1
a (Z) = aZ ∼ Pa

3. The location-scale family generated by P is {Pab : a > 0 and b ∈ R} where Pab(A) = P (a−1(A − b)).
Note that if Z ∼ P then τb(ςa(Z)) = aZ + b ∼ Pab i.e. Pab = P ◦ ς−1

a ◦ τ−1
b

4. If P� m with Lebesgue density f , then fab(x) =
dPab
dm

(x) =
1

a
f

(
x− b
a

)
Example 2.3.5. 1. The {N(µ, σ2) : µ ∈ R, σ2 > 0} is a location scale family generated by N(0, 1). (We

would use the parametrization (σ, µ) to be consistent with the above.)

2. The {Unif(a, b) : −∞ < a < b < ∞} family is a location-scale family generated by Unif(0, 1). The
location parameter is a and the scale parameter is b− a.

3. The above example is also an example of what is known as a truncation family. Let g : R→ [0,∞)

be a Borel function satisfying 0 <
∫ b
a
g(x)dx < ∞ for all −∞ < a < b < ∞. Then we put fab(x) =

g(x)I[a,b](x)∫ b
a
g(y)dy

. Clearly the uniform family is a truncation family with constant g. Such truncation

families have little if any application in practice, although they seem to play an important role in
mathematical statistics textbooks.
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4. Let P = Exp(1), the exponential distribution with Lebesgue density f(x) = exp(−x), x > 0. The
location–scale family generated by P is called the shifted exponentials, and a member thereof
will be denoted Exp[a, b] and has Lebesgue density fab(x) = a−1 exp[−(x − b)/a]I[b,∞)(x). Note
that the support [b,∞) depends on the parameter. The scale family of exponential distributions
Exp[a, 0], a > 0 (called the family of exponential distributions and not the exponential family) is
perhaps more fundamental and is frequently used as a model for observations which must be positive,
such as lifetimes or masses. Note that the shifted exponential family {Exp[β, b] : β > 0 and b ∈ R} is
not a subfamily of Gamma, and it is also not an exponential family since the support depends on the
parameter b. See Remark 2.3.1 (c) above.

5. The location family of distributions Exp[1, b] where b is an arbitrary real number has little application
in practice. It is however an example of a left truncation family in exercise.

6. We often generate families not from a single distribution but a family. For example, the Weibull(α, β)

distribution has Lebesgue density fαβ(x) =
αxα−1

βα
exp[−(x/β)α]I(0,∞)(x). β is a scale parameter. α

is a shape parameter.

2.3.4 Group Families

Definition 2.3.7. 1. A class of transformations T on (Ξ,G) is called a transformation group iff the
following hold:

(a) Every g ∈ T is measurable g : (Ξ,G)→ (Ξ,G).

(b) T is closed under composition, i.e. if g1 and g2 are in T the so is g1 ◦ g2

(c) T is closed under taking inverses, i.e. if g ∈ T then g−1 ∈ T .

If g1 ◦ g2 = g2 ◦ g1 for all g1 and g2 in T , then T is called commutative.

2. If T is a transformation group and P0 is a family of probability measures on (Ξ,G), then the group
family generated by P0 under T is P0 ◦ T−1 = {P ◦ g−1 : P ∈ P0 and g ∈ T}. Note that if Z ∼ P ,then
g(Z) ∼ P ◦ g−1.

Example 2.3.6. Consider the observation space (Rn,Bn). For an n × n nonsingular matrix A and b ∈
Rn, define the transformation gA,b(x) = Ax + b. The family of transformations T = {gA,b : A is an n ×
n nonsingular matrix and b ∈ Rn} is called the affine group. We verify that T is indeed a transformation
group by checking the three defining properties.

1. gA,b : Rn → Rn is Borel measurable since it is continuous.

2. Given gA1,b1
and gA2,b2

, we have by some simple algebra (gA1,b1
◦ gA2,b2

)(x) = (A1A2)x+ (A1b2 + b1),
i.e. (gA1,b1

◦ gA2,b2
) = gA,b where A = A1A2 and b = A1b2 + b1. This shows T is closed under taking

composition.

3. Given gA,b and x ∈ Rn consider solving for y in gA,b(y) = x, which gives y = A−1x + (−A−1b), i.e.

(g−1
A,b is an affine transformation with matrix A−1 and shift −A−1b. This shows T is closed under

taking inverses.

We note that T is not commutative, even when n = 1. There are two interesting transformation subgroups,
i.e. subsets of the affine group which are also closed under composition and taking inverses. One is the
general linear group {gA,0 : A is an n×n nonsingular matrix}, which is simply the group of all nonsingular
linear transformations on Rn . It is sometimes denoted GL(n). The other subgroup of interest is the
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translation subgroup {gI,b : b ∈ Rn}, where I is an n × n identity matrix. We now generate a group
family under the affine group. Let P0 consist of the single p.m. N(0, I), i.e. the standard normal distribution
on Rn . If Z ∼ N(0, I), then AZ+ b ∼ N(b, AAT ). Further, any nonsingular normal distribution on IRn can
be so generated. We do have the following problem if we use the parameterization (b, A): two different A’s
can give rise to the same normal distribution (i.e. if AAT = A1A

T
1 ). Thus, the parameter does not uniquely

define the distribution, i.e. the parameter is not identifiable in the terminology of Definition 2.3.2. To avoid
this problem, we will use instead the parameters (b, V ) where V = AAT is the covariance.

Definition 2.3.8. Let T be a transformation group and let P be a family of probability measures on (Ξ,G).
We say that P is T-invariant iff P ◦T−1 = P

Proposition 2.3.3. If P is a group family (generated by some P0) under T, then P is T-invariant.

Example 2.3.7. Let P be the multivariate location family generated by the N(0, I) on Rn, i.e. P =
{N(µ, I) : µRn}. Then of course P is translation invariant by the last Proposition. It turns out that the
family is also spherically invariant, whereby we mean that it is invariant under the group of orthogonal
transformations O(n) ≡ {U : U is an n × n orthogonal matrix}. To see this, note that if X ∼ N(µ, I) and

U is orthogonal then UX ∼ N(Uµ,UIUT ) and UIUT = UUT = I, so UX ∼ N(Uµ, I).

2.3.5 (Generalized) Regression Models

Often our data are represented as (xi, Yi) where the Y variable (usually, but not always, univariate) is a
“response” variable and xi is a “predictor” or “explanatory” variable. The x’s are treated as fixed (non-
random) whereas the Y ’s are modeled as random variables. The interest is in the conditional distribution
PY |X(·|x). We typically assume independence of observations. Possibly the data are realizations of i.i.d.
pairs (Xi, Yi), but we are not interested in the marginal distribution PX . In a Generalized Regression Model
(GRM) we assume the conditional distributions take the form Pθ(x) where Pθ is a typical parametric family
and θ(x) is restricted to some family of functions mapping the space of x values to the parameter space. The
real parameter for the GRM is the function θ(x). For example, the Normal Linear Model: we have p predictor
variables x1, · · · , xp which we put in a vector ~x. Our model is specified by Yi = α+ βT~xi + εi, ε ∼ N(0, σ2).
The parameters for the GRM are α ∈ R, β ∈ R, and σ > 0. Another example is the logistic regression model

where the Yi ∼ B(1, π(~xi)) where log
π(~x)

1− π(~x)
= α + βT~x. A Non-Parametric Regression (NPR) model

might take the form Yi = µ(xi) + εi, εi ∼ i.i.d. with c.d.f. F with E[εi] = 0. Here, the parameter would be
µ(·) and F . We may make restrictions on µ, e.g., that it satisfy “smoothness” properties, and on F , e.g.,
finite 2nd moments.

2.4 Distributional Calculations

2.4.1 Lebesgue Densities and Transformations

In conjunction with the change of variables theorem (Theorem 1.2.10), it was mentioned that one often
encounters a Jacobian in actually computing the induced measure, which we now explain. First, some
more review of advanced calculus on Rn. Let U be an open subset of R and h : U → R have continuous

partial derivatives
∂hi
∂xj

of all component functions, 1 ≤ i ≤ k, 1 ≤ j ≤ n. The derivative Dh(x) is the

k × n matrix with (i, j) entry
∂hi
∂xj

(x). Dh(x) is sometimes called the Jacobian matrix. It is a matrix

valued function of x. Also, Dh(x) may be used for local linear approximation of h in the sense that
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h(y) = h(x) + Dh(x)(y − x) + Rem(x, y) where the remainder term satisfies lim
y→x

||Rem(x, y)||
||y − x||

= 0 This

last equation states that the “linear” function h(x) + Dh(x)(y − x) as a function of y tends to be a good
approximation to h(y) for y close to x. If U ⊂ Rn and h : U → Rn, then Dh(x) is a square n × n matrix,
so its determinant detDh(x) = J(x) is defined and is sometimes called the Jacobian (determinant). The
Inverse Function Theorem (p. 221 of Rudin, Principles of Mathematical Analysis) states that under these
conditions, if J(a) 6= 0 at some a ∈ U , then h is invertible in a neighborhood of a and h−1 has derivative
[D(h−1)](y) = [(Dh)(h−1(y))]−1 = [((Dh) ◦ h−1)(y)]−1 at a point y in this neighborhood of h(a). Part of
the conclusion is that this inverse matrix exists in the neighborhood of h(a). Also, if J(x) 6= 0 for all x ∈ U ,
then h(V ) is an open set for any open set V ⊂ U . This latter fact (V open implies h(V ) open) implies that
h−1 is measurable, if it exists on all of h(U).

Remark. If h : Rn → R, then the derivative Dh as defined above is an n × 1 matrix, i.e. a “row vector,”
whereas the gradient ∇h is a 1× n “column vector.” Note that Dh = (∇h)T . h(y) = h(x) + (∇h(x))T (y −
x) +Rem(x, y)

Theorem 2.4.1. Suppose Ω ⊂ Rn is open and h : Ω → Rn is a one to one mapping with nonvanishing
Jacobian (i.e. J(x) 6= 0∀x ∈ Ω). Let Λ = h(Ω), and let ν be Lebesgue measure restricted to Ω. Then ν ◦ h−1

is a Borel measure on Λ, ν ◦ h−1 � m, and

d(ν ◦ h−1)

dm
(y) =

{
|detD(h−1)(y)| if y ∈ Λ

0 otherwise
m− a.e.

To check that det Dh(x) 6= 0 for all x, it suffices to show that det D(h−1)(y) 6= 0 for all y by the Inverse
Function Theorem applied to h−1. A relation between the Jacobian of h−1 and h is given by D(h−1)(y) =
[Dh(h−1(y))]−1

Proposition 2.4.2. Suppose P is a Borel p.m. on Rn which has Lebesgue density f . Let h : Ω → Λ be as
in Theorem 2.4.1 where Λ = h(Ω) and suppose P(Ω) = 1. Then P ◦ h−1 has Lebesgue density g given by
g(y) = f(h−1(y))|detD(h−1)(y)|,∀y ∈ Λ. Put otherwise, if Law[X] = P and Y = h(X), then Law[Y ] has
Lebesgue density given by g above.

Proof. Let J(y) = detD(h−1)(y), and let B ⊂ Λ be a Borel set. Then

(P ◦ h−1)(B) = P(h−1(B)) =

∫
h−1(B)

f(x)dx =

∫
Ω

Ih−1(B)(x)f(x)dx =

∫
Ω

IB(h(x))f(x)dx

where the last equality follows since x ∈ h−1(B) iff h(x) ∈ B. Now put

β(y) = IB(y)(f ◦ h−1)(y)

and since (f ◦ h−1)(h(x)) = f(x), we have

(P ◦ h−1)(B) =

∫
Ω

β((h(x))dmn(x) =

∫
Λ

β(y)d(mn ◦ h−1)(y)

where the last equation follows from the change of variables theorem (Theorem 1.2.8). By Proposition 1.4.2
(a) and the previous theorem,

(P ◦ h−1)(B) =

∫
Λ

β(y)|J(y)|dmn(y) =

∫
Λ

IB(y)(f ◦ h−1)(y)|J(y)|dy

=

∫
B

(f ◦ h−1)(y)|J(y)|dy =

∫
B

g(y)dy

Since the above result holds for arbitrary Borel B ⊂ Λ, it follows that d(P ◦ h−1)/dmn exists and equals g,
by the uniqueness part of the Radon-Nikodym Theorem.
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Example 2.4.1. 1. Log-normal distribution Suppose X ∼ N(µ, σ2) and Y = exp[X]. Then Y is
said to have a log-normal distribution with parameters µ and σ2. Perhaps we should say Y has
an “exponential-normal distribution” as it is the exponential of a normal r.v., but the terminology
“log-normal” is standard. It presumably arose from something like the statement, “The logarithm is
normally distributed.” Now we derive the Lebesgue density using the previous theorem. Now Ω = R
and Λ = (0,∞). Of course, h(x) = exp[x] and h−1(y) = log y, so D(h−1)(y) = 1/y. Hence, letting f
be the N(µ, σ2) density we have

g(y) = f(log y)
1

y
, y > 0,

=
1

y
√

2πσ2
exp

[
− 1

2σ2
(log y − µ)2

]
, y > 0.

Next we consider the problem of computing the mean and variance of Y . One approach would be
to compute

∫∞
0
ymdy for y = 1, 2. However, one should always consider all options in computing

expectations via the law of the unconscious statistician. Now E[Y m] = E[exp(mX)] which is the
m.g.f. of X evaluated at m. Recalling the m.g.f. of a univariate normal distribution ψN(µ,σ2)(t) =

exp

[
µt+

1

2
σ2t2

]
we have E[Y m] = exp

[
µm+

1

2
σ2m2

]
and so E[Y ] = exp

[
µ+

1

2
σ2

]
, V ar[Y ] =

E[Y 2]− E[Y ]2 = exp
[
2µ+ 2σ2

]
− exp

[
2µ+ σ2

]
= exp

[
2µ+ σ2

]
exp

[
σ2 − 1

]
2. Student’s t-distribution Suppose X and Y are independent r.v.’s with the following distributions:

Law[X] = N(0, 1) , Law[Y ] = χ2
n , i.e. the Lebesgue densities are given by

fX(x) =
1√
2π

exp

(
−x

2

2

)
fY (y) =

yn/2−1e−y/2

Γ(n/2)2n/2
I(0,∞)(y)

Note thatX has the standard normal distribution and Y has a chi-squared distribution with n degrees of

freedom. Let T =
X√
Y/n

. Then T is said to have Student’s t-distribution with n degrees of freedom.

We will derive the Lebesgue density for T . By Proposition 1.4.3, the joint density for X and Y is
fXY (x, y) = fX(x)fY (y). Letting Ω = R × [0,∞) = supp(Law[X,Y ]) (this last equality follows from
Exercise 1.4.19) and h(x, y) = (x/

√
y/n, y), (x, y) ∈ Ω, then h(Ω) = Ω and h is one to one on Ω since

h(x, y) = (t, u) iff x = t
√
u/n and y = u, and this gives the inverse function h−1(t, u) = (t

√
u/n, u).

Now the Jacobian matrix for h−1 is

Dh−1(t, u) =

[√
u/n t/(2

√
un)

0 1

]
with Jacobian detDh−1(t, u) =

√
u/n which is nonvanishing for all (t, u) ∈ Ω. Hence, the joint density

of (T,U) is by Theorem 2.4.1

fTU (t, u) = fXY (h−1(t, u))|detDh−1(t, u)|

=

[
1√
2π

exp(− t
2u

2n
)

] [
un/2−1e−u/2

Γ(n/2)2n/2
I(0,∞)(u)

]√
u/n

=
1√

πΓ(n/2)2(n+1)/2n1/2
u(n−1)/2 exp

[
−u(1 + t2)

2n

]
I(0,∞)(u)

To get the marginal density for T , we apply Proposition 1.4.4 to obtain

fT (t) =

∫
fTU (t, u)du =

1√
πΓ(n/2)2(n+1)/2n1/2

∫ ∞
0

u(n−1)/2 exp

[
−u(1 + t2)

2n

]
du
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In the last integral make the change of variables v = (1 + t2/n)u , so that du =
dv

1 + t2/n
. This gives

fT (t) =
1√

πΓ(n/2)2(n+1)/2n1/2

(
1 +

t2

n

)−(n+1)/2 ∫ ∞
0

v(n+1)/2−1e−v/2dv

=
1√

πΓ(n/2)2(n+1)/2n1/2

(
1 +

t2

n

)−(n+1)/2

Γ

(
n+ 1

2

)
2(n+1)/2

where the last line follows since the integrand in the previous line is the χ2
(n+1) density without the

normalizing constant. In summary,

fT (t) =
Γ(n+ 1)/2√
nπΓ(n/2)

(
1 +

t2

n

)−(n+1)/2

This is the (Lebesgue) density of Student’s t–distribution with n degrees of freedom.

The preceding example is typical of how the method gets used when one wishes to obtain the Lebesgue
density for a real valued random variable Y that is a function of a random vector X: one must extend Y
to a vector Y of the same dimension as X to obtain a one to one transformation with nonsingular Jacobian
and then apply mariginalization to get the desired density. Sometimes, it is not possible to compute the
marginal density in a neat closed form and one must be satisfied with an integral expression or something
similar.

2.4.2 Applications of Conditional Distributions

Theorem 2.4.3. Jensen’s Inequality for Conditional Expectation: Let Y : (Ω,F ,P) → (Λ,G) be a
random element and X a random n–vector defined on the same probability space. Assume there is a convex
Borel set K ⊂ Rn such that P[X ∈ K] = 1. Let g : K×Λ→ R be a measurable function on (K×Λ,BK ×G)
where BK denotes the Borel subsets of K. Assume that g(·, y) is a convex function on K for each fixed y ∈ Λ
and that E|g(X,Y )| <∞. Then

E[g(X,Y )|Y = y] ≥ g(E[X|Y = y]), Law[Y ]− a.s. (2.3)

Furthermore, if for Law[Y ] almost all y ∈ Λ, Law[X|Y = y] is nondegenerate, and if g(·, y) is strictly
convex, then strict inequality holds.

Proof. By (2.3), E[g(X,Y )|Y = y] =
∫
K
g(x, y)dPX|Y (x|y), Law[Y ] − a.s. where the integral may be taken

over K since IK(X) = 1 a.s. by assumption. Applying the ordinary Jensen’s inequality to PX|Y (·|Y = y)
and the convex function g(·, y) on the r.h.s. of the last displayed equation we have E[g(X,Y )|Y = y] ≥
g(
∫
K
xdPX|Y (x|y)), Law[Y ]− a.s.

Example 2.4.2. Let # be counting measure on N = {0, 1, · · · } and let m be Lebesgue measure on R.

Suppose (X,Y ) is a random 2–vector having joint density w.r.t. #×m, f(x, y) =
e−2yyx

x!
I(0,∞)(y) = C(y)

yx

x!

where C(y) doesn’t depend on x.
yx

x!
depends on x, it is the density (w.r.t. #) of a Poisson r.v. with mean y.

Law[X|Y = y] = Poisson(y). Since
∞∑
x=0

yx

x!
= ey, we see fY (y) = e−yI(0,∞)(y) is an exponential distribution

with mean 1. E[X|Y ] = 1 a.s. and V ar[X|Y ] = 1 a.s. Similarly, the functional dependence of f(x, y)
on y can be concentrated in a factor e−2yyxI(0,∞)(y), which is a Gamma(x + 1, 1/2) density except for a

normalizing constant 1/(Γ(x + 1)(1/2)(x+1)), so Law[Y |X] = Gamma(x + 1, 1/2). Notice that we did not
compute the marginal density of X w.r.t. # to obtain this conditional distribution.
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2.5 Order Statistics

Sometimes,X1, X2, · · · , Xn are referred to as a random sample from PX . Here, n is the sample size or the

number of trials. We can construct an “estimator” for PX given by P̂n−
1

n

n∑
i=1

δXi . Now for a fixed ω (which

gives observed values X1(ω), · · · , Xn(ω) which are fixed real numbers), P̂n is a probability measure. Indeed,
P̂n with the random Xi’s is a random probability measure on R. If h is a real valued function on R then∫
h(x)dP̂n(x) =

1

n

n∑
i=1

h(Xi), i.e. integration w.r.t. P̂n amounts to averaging the function h over the sample.

This is also a random variable. Thus, E[
∫
h(x)dP̂n(x)] = E[h(X)]. This equation says that

1

n

n∑
i=1

h(Xi)is an

unbiased estimator of E[h(X)].

If h is a given Borel function of a real variable, then the map H(PX) =
∫
h(x)dPX(x) is a functional defined

on all Borel p.m.’s PX for which the integral exists and is finite (e.g. h(x) = x gives the mean functional).
Another functional we may wish to estimate is the minimal α quantile (0 ≤ α ≤ 1) F−(α) = inf{x : F (x) ≥
α}, where F is the c.d.f. of X. For fixed α, F → F−(α) is a functional on all distributions on R. Replacing
F in the definition by the empirical distribution function F̂n gives the minimal α sample quantile F̂−n (α).
In general, we don’t have the relation that E[F̂−n (α)] = F−(α). That is, the sample quantile is generally a
biased estimator of the true quantile. See Example 2.5.1 below. But the estimate is still a very natural one,
and the bias is generally quite small.

Above we spoke of P̂n as being a “random probability measure”. Such a random object is not well defined at
this point because we have not introduced a σ-field on the set of probability measures on R. Also, we don’t
know what it means for F̂n to be a “random distribution function” since we haven’t introduced a σ-field
on the set of cumulative distribution functions. However, P̂n has a very special form since it is discrete,
supp[P̂n] has at most n points (exactly n points if all values in the sample are distinct), and the amount of
probability mass at each point is a positive integer times 1/n (exactly 1/n if the points are distinct). Thus,
we can think of the subset of such probability measures, which is “isomorphic” with a Euclidean space. Put
less technically, we only need a finite number of numbers to determine P̂n, e.g. n numbers where n is the
sample size, since if we know all n observed values then we know P̂n. Similar remarks hold for F̂n. However,

the mapping from Rn to discrete probability measures given by p(x1, · · · , xn) =
1

n

n∑
i=1

δxi , xi ∈ R, 1 ≤ i ≤ n

is not one to one since we can’t reconstruct the order of the observations from P̂n. For instance, if π is
a permutation of {1, ·, n}, then p(xπ(1), · · · , xπ(n))p(x1, · · · , xn). Recall that a permutation of {1, ·, n} is a
one to one correspondence (bijective map) of the finite set with (into) itself. Thus, if π is a permutation of
{1, ·, n}, then {π(1), ·, π(n)} is simply a reordering of {1, ·, n}. This last displayed equation merely states the
obvious fact that if we reorder the observations, then we get the same empirical probability.

2.5.1 Order Statistics Introduction

Let X = (X1, X2, · · · , Xn) denote the vector of all observations. Consider the subset of IRn given by
Pn = {x ∈ Rn : x1 ≤ · · · ≤ xn}. On Pn, the mapping p above is a one to one correspondence, so we can
identify the set of possible empirical probability distributions (or empirical c.d.f.’s) with Pn, since given an
element of Pn, we can associate a unique empirical probability distribution, and vice versa.

The mapping which “orders” our sample X = (X1, · · · , Xn) so that it becomes a random vector taking
values in Pn will be denoted Sort, i.e. Y = Sort(X) means Y ∈ Pn and there is a permutation π of {1, ·, n}
such that Yi = Xπ(i) for all i. Y is known as the vector of order statistics. Two notations for the i’th
component Yi of Y that are frequently used are X(i) and Xi:n. Intuitively, if we believe the components
of X are i.i.d., then Sort(X) contains “as much information” about the unknown probability distribution
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as the original vector of observations X. We will show below in fact that given Sort(X), it is possible to
“reconstruct” X in random vector with the same distribution.

Let Perm(n) denote the set of all permutations of {1, · · · , n}, then #Perm(n) = n!. Note that Perm(n)
has the following properties:

1. If π1 and π2 are in Perm(n) then so is π1 ◦ π2

2. There is an element ι ∈ Perm(n) s.t. ι ◦ π = π ◦ ι for every π ∈ Perm(n)

3. For every π ∈ Perm(n), there is an element π−1 ∈ Perm(n) s.t. π ◦ π−1 = π−1 ◦ π = ι

These three properties make Perm(n) into a group under the (group) operation of composition (i.e. ◦).
Note that R is a group under +, and both R− {0} and (0,∞) are groups under multiplication. Now define
ζ◦Perm(n) = {ζ◦π : π ∈ Perm(n)}. One can show that for all ζ ∈ Perm(n), ζ◦Perm(n) = Perm(n). We
will write Perm when n is clear from context. To each permutation π ∈ Perm(n) there corresponds a unique
linear transformation π̃ on Rn which reorders the components of a vector π̃(y1, · · · , yn) = (yπ(1), · · · .yπ(n)).
One can easily see that the n × n matrix corresponding to π̃ is A where Aij = 1 if π(j) = i and otherwise
Aij = 0. Note that there is a single 1 in every row and in every column of A, and the remaining entries
are 0. Such a matrix is called a permutation matrix. Also, one can show that A−1 = AT , i.e. A is an
orthogonal matrix.

If π is any permutation, then clearly Sort(π̃x) = Sort(x), i.e. if we permute the components of x and then
rearrange permuted components into ascending order, we obtain the same result as if we didn’t permute the
components before ordering them. Thus, we say Sort is invariant under coordinate permutations, or simply
permutation invariant. Now, we characterize some measurability properties of the mapping Sort: Rn → Pn

Theorem 2.5.1. 1. A Borel set B is σ(Sort) measurable iff it satisfies the following symmetry property:
x ∈ B imples π̃x ∈ B for all π ∈ Perm. A function h : Rn → R is σ(Sort) measurable iff it is
invariant under permutations of the variables, i.e. h ◦ π̃ = h for all π ∈ Perm.

Proof. We claim that for A ⊂ Pn, Sort−1(A) =
⋃

π∈Perm

π̃−1(A). Let x ∈ Rn and let y = Sort(x).

If Sort(x) ∈ A, then π̃x ∈ A for some permutation π, and hence Sort−1(A) ⊂
⋃
π
{x : π̃x ∈ A}.

If π̃x ∈ A for some π, then π̃x = Sort(x) since A ⊂ Pn and Sort(x) is the unique element of Pn
that can be obtained by permuting the components of x, so Sort(x) ∈ A, and we have shown that⋃
π
{x : π̃x ∈ A} ⊂ Sort−1(A).

Suppose B ∈ σ(Sort), B =
⋃
π
π̃−1A for some Borel set A ⊂ Pn. If ζ ∈ Perm then ζ̃−1B =⋃

π∈Perm

ζ̃−1π̃−1A =
⋃
π

(π̃ ◦ ζ̃)−1A =
⋃
π
π̃−1A. This shows that B is symmetric. Conversely, if B

is symmetric, then it is easy to see that B =
⋃
π
π̃−1A with A = B ∩ Pn, and hence B is σ(Sort)

measurable.

By Theorem 1.5.1, h is σ(Sort) measurable iff there is a g : Pn → R s.t. h = g ◦ (Sort). It follows
that if h is σ(Sort) measurable then h ◦ π̃ = g ◦ (Sort) ◦ π̃ = g ◦ (Sort) = h since (Sort) ◦ π̃ = Sort
for any π ∈ Perm. Conversely, suppose h = h ◦ π̃ for all π ∈ Perm. Now for every x ∈ Rn, Sort(x) is
obtained by a permutation of the components of x. So h(x) = h(Sort(x)) and h is σ(Sort) measurable
by Prop 1.2.3

2. Suppose X is a random n-vector with i.i.d. components and continuous one dimensional marginal c.d.f.
Then P [Sort(X) ∈ D] = n!P [X ∈ D] , for D ⊂ Pn. In particular, if X1 has a Lebesgue density f ,
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then under the i.i.d. assumption, Y = Sort(X) has a Lebesgue density on Rn given by

fY ((y) =

n!
n∏
i=1

f(yi), if y ∈ Pn

0, if y /∈ Pn

Proof. If D ⊂ Pn then P [Sort(X) ∈ D] = P [X ∈ Sort−1(D)] = P [X ∈
⋃
π
π̃−1(D)], where the union

is over all π ∈ Perm. Claim that if π 6= ζ, then P [X ∈ π̃−1(D) ∩ ζ̃−1(D)] = 0. Assuming the claim is
true, it follows that the sets in the union “essentially disjoint” and hence P [X ∈

⋃
π
π̃−1(D)] =

∑
π
P [X ∈

π̃−1(D)]. By “essentially disjoint” we mean that the intersection has probability measure 0.

We hope that these claims are fairly obvious, but for the sake of mathematical formalism, we will show
that I⋃

π
π̃−1D(x) =

∑
π∈Perm

Iπ̃−1D(x), for Law[X] almost all x. Taking expectations (i.e. integrating

w.r.t. the distribution of X) of both sides of P [X ∈
⋃
π
π̃−1(D)] =

∑
π
P [X ∈ π̃−1(D)]. Given x the sum

on I⋃
π
π̃−1D(x) is the number of sets π̃−1D to which x belongs, and x belongs to two or more π̃−1D iff

there is a pair of distinct permutations π and ζ such that x ∈ (π̃−1D) ∩ (ζ̃−1D). However, this means
that x = π̃y = ζ̃y for some y ∈ D, where π and ζ are dinstinct permutations. However, when π and ζ

are distinct permutations it is true that (π̃−1D) ∩ (ζ̃−1D) ⊂ {x : xi = xj , i 6= j}

Note that π and ζ being distinct permutations implies π(k) 6= ζ(k). Suppose x ∈ (π̃−1D) ∩ (ζ̃−1D)
where π and ζ are distinct permutations. This means x = π̃y = ζ̃y for some y ∈ D. But because π
and ζ are distinct permutations, it follows that yπ(k) = yζ(k), and takin i = π(k) and j = ζ(k), we

have i 6= j but xi = yπ(k) = xj = yζ(k),and hence x ∈ {x : xi = xj , i 6= j}. PX [(π̃−1D) ∩ (ζ̃−1D)] ≤
PX({x : xi = xji 6= j} = 0. This equality follows by the assumption that the common c.d.f. of the Xi

is continuous. This implies that P [Xi = x] = 0 for every x ∈ R.

3. If X has i.i.d. components with continuous c.d.f., as in part (b), then Law[X|Sort(X) = y] =
1

n!

∑
π∈Perm

δπ̃y. Hence, E[h(X)|Sort(X)] =
1

n!

∑
π∈Perm

h(π̃X)

Proof. For B ∈ Bn and y ∈ Pn,let p(B, y) =
1

n!

∑
π∈Perm

δπ̃y(B). For fixed y, p(·, y) is clearly a p.m.

Thus, we need to show P [X ∈ B|Sort(X) = y] =
1

n!

∑
π∈Perm

IB(π̃y), i.e. that p(B, y) is a version of

P [X ∈ B|Sort(X) = y].
1

n!

∑
π∈Perm

IB(π̃y) is a Borel function of y. Thus, we need to check that if
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A ⊂ Ω which is σ(Sort(X)) measurable, then∫
A

IB(X)dP =

∫
A

p(B,Sort(X))dP =

∫
C

p(B,Sort(X))dPX(x) (A = X−1(C) for some C ∈ σ(Sort))

=

∫
⋃
π
π̃−1D

p(B,Sort(X))dPX(x) (by Change of variables and C =
⋃
π

π̃−1D for some Borel D ⊂ Pn)

=
∑

π∈Perm

∫
π̃−1D

p(B,Sort(X))dPX(x) (I⋃
π
π̃−1D(x) =

∑
π∈Perm

Iπ̃−1D(x))

=
∑

π∈Perm

∫
D

p(B,Sort(π̃−1w))dPπ̃X(w)

(Change of variables and W = π̃X, Law[W ] = Law[π̃X] = Law[X]

since Pπ̃X =

n∏
i=1

PXπ(i)
=

n∏
i=1

PX1 = PX because X1, · · · , Xn all have the same marginal distribution.)

=n!

∫
D

p(B,Sort(x))dPX(x) (Sort is permutation invariant)

=n!

∫
D

[
1

n!

∑
π∈Perm

IB(π̃Sort(x))

]
dPX(x) =

∑
π∈Perm

∫
D

IB(π̃Sort(x))dPX(x)

=

∫
D

[ ∑
π∈Perm

IB(π̃Sort(x))

]
dPX(x)

=

∫
D

[ ∑
π∈Perm

IB(π̃x)

]
dPX(x) (For a given x π̃Sort(x) ranges over the same collection of values as π̃(x))

=
∑

π∈Perm

∫
D

IB(π̃x)dPX(x) =
∑

π∈Perm

∫
π̃−1D

IB(w)dPπ̃X(w)
∑

π∈Perm

∫
π̃−1D

IB(w)dPX(w)

=

∫
⋃
π
π̃−1D

IB(x)dPX(x) =

∫
C

IB(x)dPX(x) =

∫
A

IB(X)dP

Remark. Note that for each fixed y ∈ Pn, Law[X|Sort(X = y] is a p.m. on Rn. Given the order statistics,
each of the n! possible permutations of the data is equally likely.

2.5.2 Applications

X i.i.d. and letX(i) denote the i’th order statistic, the c.d.f. ofX(i) is P [X(i) ≤ x] = P [at least i of X are ≤ x] =

P [
n∑
j=1

I(−∞,x](Xj) ≥ i] =
n∑
j=1

(
n
j

)
F (x)j [1 − F (x)]n−j , similarly the Bin(n, F (x)). Assuming the Xi’s have

Lebesgue density fX(i)(x) = i
(
n
i

)
F (x)i−1[1− F (x)]n−if(x) = n

(
n−1
i−1

)
F (x)i−1[1− F (x)]n−if(x)

Example 2.5.1. LetXi be i.i.d. Unif(0, 1). Lebesgue density for i’th order statistics is fi(x) =
n!

(i− 1)!(n− 1)!
xi=1(1−

x)n−i =
Γ(n+ 1)

Γ(i)Γ(n+ 1− i)
xi=1(1 − x)n−i. This is a Beta(n + 1, i) distribution. E[X(i)] =

Γ(i+ 1)Γ(n− i)
Γ(i)Γ(n+ 1− i)

.

In particular, we know that X(i) = F̂−n (α) for α ∈ ((i − 1)/n, i/n], so F̂−n (α) is an unbiased estimator of α
only for the particular value α = i/(n+ 1).
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Example 2.5.2. Let Xi be i.i.d. Exp(1). In this setting one achieves a particularly nice result for the joint
distribution of the spacings defined by Y1 = X(1) and Yi = X(i)−X(i−1), and employ the transformation the-
ory to derive the order statistics joint and marginal distribution based on Jacobians. The inverse transforma-

tion is x(i) =
i∑

j=1

yj .
dSort((x)

dy
is a unit lower triangle matrix, and |det(dSort((x)

dy
)| = 1. The joint Lebesgue

density of X(i) is f(x(1),··· ,x(n) = n! exp

[
−

n∑
i=1

x(i)

]
,
n∑
i=1

x(i) =
n∑
i=1

i∑
j=1

yj =
n∑
j=1

n∑
i=j

yj =
n∑
j=1

(n − j + 1)yj , so

the Lebesgue density of Yi’s f(y) = n! exp

[
−

n∑
j=1

(n− j + 1)yj

]
=

n∏
j=1

(n − j + 1) exp[−(n − j + 1)yj ] with

Law[Yi] = Exp

(
1

n− i+ 1

)
Example 2.5.3. Let Xi be i.i.d. N(µ, σ2) Range(X) = max(X)−min(X) = X(n)−X(1). In quality control,
it is common to estimate the standard deviation σ by a multiple of the sample range, i.e. to use the estimator
σ̂R = CnRange(X) where Cn is chosen to have E[σ̂R] = σ. Xi = Ziσ + µ are i.i.d. N(µ, σ2). Range(X) =
σRange(Z), E[CnRange(X)] = CnσE[Range(Z)]. If we take C−1

n = E[Range(Z)], then E[CnRange(X)] =
σ. E[Range(Z)] = E[max(Z)] − E[min(Z)] = E[max(Z)] + E[max(−Z)] = E[max(Z)] + E[max(Z)] =
2E[max(Z)]. The Lebesgue density for Z(n) is f(z) = nΦ(z)n−1φ(z), E[max(Z)] = n

∫
R zΦ(z)n−1φ(z)dz

Example 2.5.4. Let U be i.i.d. Unif [0, 1]. If F (x) is a given c.d.f., then Xi = F−(Ui) with i.i.d. marginal
c.d.f. F (Proposition 1.2.4). If V = Sort(U), then Y = Sort(X) = (F−(V1), · · · , F−(Vn)). Assuming

Law[Xi] has a Lebesgue density f(x), one can show that
dvi
dyi

= f(yi). If i < j, then fYi,Yj (yi, yj) =

fVi,Vj (F (yi), F (yj))f(yi)f(yj). Now to compute a bivariate marginal Lebesgue density for Vi and Vj with
i < j, we will use the integration formulae∫ vi

0

· · ·
∫ v2

0

dv1 · · · dvi−1 =
1

(i− 1)!
vi−1
i∫ 1

vj

· · ·
∫ 1

vn−1

dvn · · · dvj+1 =
1

(n− j)!
(1− vj)n−j∫ vj

vi

· · ·
∫ vi+2

vi

dvi+1 · · · dvj−1 =
1

(j − i+ 1)!
(vj − vi)j−i+1

From these it follows that

fVi,Vj (vi, vj) =
n!

(i− 1)!(j − i+ 1)!(n− j)!
vi−1
i (F (yj)− F (yi))

j−i+1(1− F (yj))
n−j

fYi,Yj (yi, yj) =
n!

(i− 1)!(j − i+ 1)!(n− j)!
F (yi)

i−1
i (F (yj)− F (yi))

j−i+1(1− F (yj))
n−jf(yi)f(yj), yi < yj

2.5.3 Further Result

Let Un be a random vector with i.i.d. Unif [0, 1], and V n = Sort(Un). For1 ≤ i ≤ j ≤ n, V n[i : j] =
(Vi,n, Vi+1,n, · · · , Vj,n). If i > j, then V n[i : j] is an empty vector with no component. We also deine V0,n = 0
and Vn+1,n = 1. To determine Law[V n[i : j]|V n[1 : (i − 1)], V n[(j + 1) : n]], we need the Lebesgue density
of V n, fV n(v) = n! for 0 ≤ v1 ≤ · · · ≤ vn ≤ 1. Thus, we could have

fV n[i:j]|V n[1:(i−1)],V n[(j+1):n](v[i : j]|v[1 : (i− 1)], v[(j + 1) : n]) =
fV n(v)

fV n[1:(i−1)]|V n[(j+1):n](v[1 : (i− 1)]|v[(j + 1) : n])
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The numerator is constant in the region where density of V n is positive, so as a function of v[i : j], the
conditional density is constant, i.e. it is a uniform density on the region of Rj−i+1 where it is positive. Thus,
it is only necessary to determine the region where it is positive, which clearly is vi−1 ≤ vi ≤ vi+1 ≤ · · · ≤
vj ≤ vj+1. Note however that this is the Lebesgue density of the order statistics of j − i + 1 i.i.d. random
variables with the uniform distribution on [vi−1, vj+1]. Thus,

Law[V n[i : j]|V n[1 : (i− 1)] = v[1 : (i− 1)]&V n[(j + 1) : n] = v[(j + 1) : n]] = Law[(vj+1 − vi−1)V j−i+1 + vi−1]

Using above equation and Example 2.5.4 related to uniform random variable transform, one can show that
if X has i.i.d. components with Lebesgue density f , then denoting the order statistics by X(1) ≤ · · · ≤ X(n),
we have for instance Law[X(2), · · · , X(n−1)|X(1) = x(1), X(n) = x(n)] has a Lebesgue density on R2

n given by

f(x(2), · · · , x(n−1)|x(1), x(n)) =

(n− 2)!
n−1∏
i=1

f(x(i))

[F (x(n))− F (x(1))]n−2
, for x(1) ≤ · · · ≤ x(n)

Proposition 2.5.2. Let X be as in Theorem 2.5.1 (2). Then Rank(X) has a uniform distribution on

Perm(n), i.e. P [Rank(X) = π] =
1

n!
for all π ∈ Perm(n).
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