
STAT 532: Foundations of Statistical Inference I Fall 2020

Lecture 1: Measure Space
Lecturer: Dennis Cox Scribes: Shu-Hsien Cho

Objectives of theoretical statistics

Statistics is about the mathematical modeling of observable phenomena, using stochastic models, and about
analyzing data: estimating parameters of the model and testing hypotheses. Theoretical statistics relies
heavily on probability theory, which in turn is based on measure theory. Thus, a student of advanced
statistics needs to learn some measure theory. A proper introduction to measure theory is not provided here.
Instead, definitions and concepts are given and the main theorems are stated without proof.

Measure theory is a rather difficult and dry subject, and many statisticians believe it is unnecessary to
learn measure theory in order to understand statistics. To counter these views, we offer the following list of
benefits from studying measure theory:

1. A good understanding of measure theory eliminates the artificial distinction between discrete and
continuous random variables. Summations become an example of the abstract integral, so one need
not dichotomize proofs into the discrete and continuous cases, but can cover both at once.

2. One can understand probability models which cannot be classified as either discrete or continuous.
Such models do arise in practice, e.g. when censoring a continuous lifetime and in Generalized Random
Effects Models such as the Beta-Binomial.

3. The measure theoretic statistics presented here provides a basis for understanding complex problems
that arise in the statistical inference of stochastic processes and other areas of statistics.

4. Measure theory provides a unifying theme for much of statistics. As an example, consider the notion
of likelihoods, which are rather mysterious in some ways, but at least from a formal point of view are
measure theoretically quite simple. As with many mathematical theories, if one puts in the initial effort
to understand the theory, one is rewarded with a deeper and clearer understanding of the subject.

5. Certain fundamental notions (such as conditional expectation) are arguably not completely understand-
able except from a measure theoretic point of view. Rather than spend more words on motivation, let
us embark on the subject matter.

1.1 Measures

A measure space is a 3-element (Ω,F , µ), where Ω is a set (e.g. possible outcomes of random experiment,
all ”sets”), F is a collection of subsets of a set Ω, and µ is a measure / function from F to [0,∞). µ satisfies

1. µ(∅) = 0

2. A sequence of measurable disjoint sets A1, A2, · · · in F , then µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An)

Note. ω (element) ∈ Ω, but ω 6= {ω} (set). That is, µ({ω}) may be meaningful, but µ(ω) is nonsense.
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1.1.1 σ-fields

Here we need some requisite properties for the class of sets on which a measure is well defined.

Definition 1.1.1. Let F be a collection of subsets of a set Ω, then F is called a σ-field iff it satisfies :

1. ∅ ∈ F

2. If A ∈ F , the Ac ∈ F

3. If A1, A2, · · · is a sequence of elements (that is, {A1, A2, · · · } is a countable subset) of F ,
∞⋃
n=1

An ∈ F

(Ω,F) is a measurable space, and the element of F is measurable set / measurable event. Given the
measurable space, a measure is a function µ : F → R̄ = R ∪ {−∞,∞} (extended real numbers) satisfying

1. nonnegative: ∀A ∈ F , 0 ≤ µ(A) ≤ ∞.

2. µ(∅) = 0

3. (Countable additivity property) If A1, A2, · · · is a sequence of disjoint sets of F , then µ

(⋃
n
An

)
=∑

n
µ(An)

Remark. Probability Spaces

1. (Ω,F ,P) is a probability space with P(Ω) = 1, P is probability measure.

2. Elements of F (Measurable sets) are events.

3. Ω is the sample space. (underlying space)

4. ∅ ∈ F , that is to say, Ω ∈ F

5. Given any set Ω, the most trivial (smallest) σ-field is F = {∅,Ω}. The power set P(Ω) = {A : A ⊂ Ω}
consisting all subsets of Ω is the largest σ-field on Ω. (2Ω) It is easy to prove that the F is a σ-field.

(a) ∅ ∈ F
(b) A ∈ F implies Ac = Ω \A ∈ F
(c) A1, A2, · · · in F implies

⋃
n
An ∈ F

Given any A ⊂ P(Ω), σ(A) is the smallest σ-field containing A.

Example 1.1.1. (Jun Shao Equation 1.1, Robert Ash Example 1.2.2)

Let A be a nonempty subset of Ω (A ⊆ Ω), the smallest σ-field containing A, σ({A}) = {∅, A,Ac,Ω}

Definition 1.1.2. The smallest σ-field containing C, a collection of subsets of Ω, is denoted by σ(C) and
is called the σ-field generated by C. That is to say, if F is any σ-field containing C, then σ(C) ⊂ F . (The
details and proof are shown in the main text Prop. 1.1.1, it also shows that the exception of the countable
additivity property that intersection may be an uncountable collection Γ of σ-fields.)
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Definition 1.1.3. Borel σ-field B on R is the σ-field generated by the collection of all finite open intervals.
Any ”practical” subset of R is a Borel set. Actually, all open/closed sets, all intervals(semi-infinite interval
or half open interval), and all finite subsets of R are Borel sets.

B = σ ({(a, b) : −∞ < a < b <∞})
= σ ({[a, b] : −∞ < a < b <∞})
= σ ({[a,∞) : a ∈ R})

So, there exists a unique measure m (Borel measure) on (R,B) satisfies ∀a, b ∈ R, a < b, then m((a, b)) = b−a.

Example 1.1.2. Counting Measure of any (Ω,F) : µ(A) = #(A) the number of elements in A. If A is
an infinite set, then #(A) =∞. It is fairly easy to check that (Ω,F ,#) is a measure space (check the three
properties). Unless otherwise stated, we will use the power set for the σ–field when dealing with counting
measure, i.e. F = P(Ω)), the collection of all subsets of Ω. Note that most of the unions and intersections
have been countable.

Example 1.1.3. Unit Point Mass Measure: Given a measurable space (Ω,F) and x ∈ Ω.

δx(A) =

{
1, if x ∈ A
0, if x /∈ A

Note that counting measure on {x1, x2, · · · } can be written in terms of unit point masses as # =
∑
i

δxi , and

the sum of measures is a measure. Then we could check it is a probability measure easily. this measure is
useful in empirical distribution (see below).

To compute some other values of m(B), B ∈ B, we need Proposition below. We will also add another part
to this result for increasing unions.

Proposition 1.1.1. Basic Properties of Measures. Let (Ω,F , µ) be a measure space.

1. Monotonicity: A ⊂ B implies µ(A) ≤ µ(B)

2. Subadditivity: For any sequence A1, A2, · · · , µ(∪An) ≤
∑
µ(An)

3. Continuity (increasing/decreasing intersections): If A1 ⊂ A2 ⊂ A3 ⊂ · · · (orA1 ⊃ A2 ⊃ A3 ⊃ · · · ) and
µ(Ai) ≤ ∞, then

µ
(

lim
n→∞

An

)
= lim
n→∞

µ(An), where lim
n→∞

An =

∞⋃
i=1

Ai(or

∞⋂
i=1

Ai)

Proof. 1. A ⊂ B,B = A ∪ (Ac ∩ B), A and (Ac ∩ B) are disjoint. By countable additivity property
(Definition 1.1.1-3), µ(B) = µ(A) + µ(Ac ∩B) ≥ µ(A) by Definition 1.1.1-1.

Some other detailed proofs could be found in K.L. Chung Section 2.2.

Example 1.1.4. 1. m : x ∈ R,m({x}) = m

( ∞⋂
n=1

(x− 1
n , x+ 1

n )

)
= lim

n→∞
m
[
(x− 1

n , x+ 1
n )
]

= 0 (Sin-

gleton set in Lebesgue measure has length 0.)

2. m([a, b]) = m({a} ∪ (a, b) ∪ {b}) = m({a}) +m({b}) +m((a, b)) = m((a, b)) = b− a
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Proposition 1.1.2. 1. µ1, µ2, · · · are a finite/infinite sequence of measures on (Ω,F), and a1, a2, · · · are
nonnegative real numbers. Then µ =

∑
i

aiµi is also a measure on (Ω,F)

2. If each of the µi is a probability measure and
∑
ai = 1, then µ is also a probability measure. We also

allow some ai =∞ here for ∞ · 0 = 0

How do we get a Rp measure? see Section 1.3 about the product measure theorem. With these measure
knowledge, we could simplify some proof steps.

1.1.2 Distribution Functions

Given any F : R→ R satisfying following theorem, there is a unique Borel probability measure P on (R,B)
can define (cumulative) distribution function F (x) = P((−∞, x]),∀x ∈ R.

Theorem 1.1.3. The c.d.f. of a Borel probability measure has the following properties

1. F (−∞) = lim
x→−∞

F (x) = 0

2. F (∞) = lim
x→∞

F (x) = 1

3. F is nondecreasing i.e. F (x) ≤ F (y) if x < y.

4. F is right-continuous F (x+ 0) = lim
z↓x

F (z) = F (x), z ↓ x means z > x and z → x.

5. F’s left limit exists: F (x− 0) = lim
z↑x

F (z) = F (x)

Example 1.1.5.

F (x) =


0, x < 0
1

2
(1 + x), if 0 ≤ x ≤ 1

1, if x > 1

1

0

Remark. Quantile Function: more detailed content of quantile function and its application could be
found in Jun Shao 5.2 & 5.3 for Estimation in Nonparametric Models. Professor Cox mentioned the quantile
function as an introduction after we discuss the inverse image in 1.2.1, but I still put this remark here. The
quantile function in quite important in nonparametric statistics and empirical distribution (will be shown
later).

1. Quantile function is the inverse of a c.d.f.

2. For α ∈ (0, 1) or [0, 1], F−(α) = inf{x : F (x) ≥ α}, and F+(α) = sup{x : F (x) ≤ α}, if F is strictly
increasing and continuous, iff F− = F+ = F−1. (We can easily find that inf ∅ = +∞ and sup ∅ = −∞,
so F−(α) ≤ F+(α),∀α ∈ (0, 1) in HW1 exercise 1.1.15)

3. If 0 < α < 1,then ∃x s.t. F (x) < α



Lecture 1: Measure Space 1-5

4. F−(α) = F+(α) = x if ∀ε > 0 there exist x1 ∈ (x−ε, x) and x2 ∈ (x, x+ε) with F (x1) < F (x) < F (x2).
x is a point of increase for F

5. Median of a c.d.f. is defined as Med(F ) =
1

2

[
F−

(
1

2

)
+ F+

(
1

2

)]
. Using order statistics and

k =
n

2
, x(1) ≤ x(2) ≤ · · · ≤ x(n) ≤, median is

x(k) + x(k+1)

2

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Example 1.1.6. Please see the figure above. F−1(0.2) = [2, 3), F−(0.2) = 2, F+(0.2) = 3 because {x :
F (x) ≥ 0.2} = [2,∞) and {x : F (x) ≤ 0.2} = (−∞, 3]

Remark. Empirical Distribution: Here Professor Cox also discussed Empirical Distribution as an in-
troduction after introducing inverse image operator. More details shown in Jun Shao 5.1 Distribution
Estimators.

1. Data (x1, x2, · · · , xn) are elements of some set Ω = R, we count the data only once in the set Ω, i.e.
xi 6= xj ,∀i 6= j. But we allow replicates in data set. e.g. {1, 2, 2} = {1, 2} but (1, 2, 2) 6= (1, 2).

2. To include this data set, we use unit point mass measure here. We also need Proposition 1.1.2 to
conduct an empirical distribution.

3. P̂ =
1

n

n∑
i=1

δxi .

4. Note that for any measurable set A ∈ Ω, P̂ (A) is the proportion of data points(observations) in A.

5. P̂n(A) =
1

n

n∑
i=1

δxi(A) =
1

n
#{i : xi ∈ A}

6. xi ∈ R, then P̂ is Borel probability measure has c.d.f F̂ (x) = (proportion of observations ≤ x) =
P̂ ((−∞, x])
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1.2 Measurable Functions and Integration

A measure µ as a real valued function is defined on a class of subsets F of Ω. Every set A ⊂ Ω is associated
with a unique real valued function called the indicator function of A. It is given by

IA(x) =

{
1, if x ∈ A
0, if x /∈ A

Thus, we may think of a measure as being defined on the class of indicator functions of sets A ∈ F . Instead
of writing µ(A), we could write “µ(IA)”. In this section we define the abstract notion of integration which
extends the definition of µ to a large class of real valued functions, i.e. we can define “µ(f),” usually written∫
fdµ (so that µ(A) =

∫
IAdµ)

1.2.1 Measurable Functions

Since Ω can be quite arbitrary, it is often convenient to consider a function (mapping) f from Ω to a simpler
space Λ (often Λ = Rk). The inverse image operator is: any function f : A → B, f−1 : P(B) → P(A).
Where C ⊆ B, f−1(C) = {a ∈ A : f(a) ∈ C}. It maps a set to another set

Proposition 1.2.1. 1. f−1(Ac) = [f−1(A)]c

2. For any A ⊂ Λ and A1, A2, · · · are subsets of Λ, f−1

(⋃
i

Ai

)
=
⋃
i

f−1 (Ai) and f−1

(⋂
i

Ai

)
=⋂

i

f−1 (Ai).

Proof could be found in Cox section 1.2.1.

Applying this to a c.d.f. F : R→ R

F−1({α}) =


∅, if no x s.t. F (x) = α

{x}, if unique x s.t. F (x) = α

[x1, x2), if F (x) = α and all x ∈ [x1, x2),but F (x2) 6= α

[x1, x2], if F (x) = α and all x ∈ [x1, x2), and F (x2) = α

If F−1({α}) = [x1, x2), then F−(α) = x1, F
+(α) = x2 (that is to say, always F− ≤ F+)

Definition 1.2.1. (Ω,F) and (Λ,G) are measurable spaces. f : Ω → Λ is measurable function iff ∀A ∈
G, f−1(A) ∈ F (or f−1(G) ⊂ F , a sub-σ-field of F). Λ = R and G is the Borel σ-field, f is Borel measurable
(real value Borel function). All this kinds of function is more practical.

Definition 1.2.2. f : (Ω,F)→ (Λ,G), the σ-field generated by f is f−1(G), denoted σ(f)

Take the indicator function above as an example, IA(x) = δx(A) (Sure, it is similar to empirical distribution).

For B ∈ B=Borel sets as an example.

I−1
A (B) =


∅, if 0, 1 /∈ B
A, if , 1 ∈ B, 0 /∈ B
Ac, if 0 ∈ B, 1 /∈ B
Ω, if 0, 1 ∈ B
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I−1
A (B) ∈ F , IA is a Borel function, σ(IA) = σ({A}) is a much smaller σ-field than F (a power set). We

usually use this property to generate a random variable with appropriate σ-field with interested subsets.

Simple functions: φ(ω) =
n∑
i=1

aiIAi(ω) where Ai are measurable sets on Ω and ai are real numbers. Let

A1, · · · , Ak be a partition of Ω, σ(φ) = σ({A1, · · · , An}). φ is also a Borel function, we need the following
proposition.

Proposition 1.2.2. (Jun Shao Proposition 1.4)(Ω,F) is a measurable space.

1. f is Borel iff f−1((a,∞))→ F ,∀a ∈ R

2. If f, g are Borel, fg and af + bg, a, b ∈ R are also Borel. f/g is Borel provided g(ω) 6= 0

3. Suppose f1, f2, · · · are Borel. Let L = {ω ∈ Ω : lim
n→∞

fn(ω) exists}, then L is a measurable set in Ω

and

h(ω) =

{
lim
n→∞

fn(ω), ∀ω ∈ L is Borel.

f1(ω), ∀ω /∈ L

4. f is measurable (Ω,F)→ (Λ,G) and g is measurable (Λ,G)→ (∆,H), the composite function g ◦ f is
measurable (Ω,F)→ (∆,H)

5. Ω is a Borel set in Rp, if f is a continuous function from Ω to Rq, then f is measurable

The proof could be found in Billingsley Chapter 10 and 13, and Cox Proposition 1.2.1-1.2.3. Based on the
above proposition, it is hard to find a non-Borel function.

Let f be a nonnegative Borel function on (Ω,F), there exists a sequence of simple functions {φn} satisfying
0 ≤ φ1 ≤ φ2 · · · ≤ f and lim

n→∞
φn = f . This is useful for technical proofs.

1.2.2 Induced Measure

We need Proposition 1.2.2-4 for us to construct an induced measure, which is very important in statistics.
Just as we said before, the borel set Ω might contain too much useless information for us, and we try to
generate a random variable to obtain some interested subsets. Here we use a measure µ (maps a set to a
real number) and a measurable function f (maps one set to another set) on G.

Let (Ω,F , µ) be a measure space, (Λ,G) a measurable space, and f : (Ω,F)→ (Λ,G) a measurable function.
Define a function µ ◦ f−1 on G by (µ ◦ f−1)(C) = µ(f−1(C)), C ∈ G. Keep in mind that the measurable
function f pulls a σ-fields backwards (i.e. σ(f) ∈ F) but µ◦f−1 is a measure on the range space (Λ,G) How
to verify the µ ◦ f−1 is a measure? We need to prove Definition 1.1.1 for measure.

Proof. 1. 0 ≤ µ ◦ f−1(C) ≤ ∞ is trivial.

2. Ω = f−1(Λ) = f−1(Λ ∪ ∅) = (f−1(Λ) ∪ f−1(∅)) = Ω ∪ f−1(∅), we can easily find that f−1(∅) = ∅,
µ(f−1(∅)) = µ(∅) = 0

3. µ ◦ f−1(C) = µ ◦ f−1(
∞⋃
i=1

Ci) = µ ◦ (
∞⋃
i=1

f−1(Ci)) =
∞∑
i=1

(µ ◦ f−1)(Ci) by Proposition 1.2.1-2.
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In probability space (Ω,F ,P) and a measurable function X : Ω→ R is a real valued random variable, then
the induced measure P◦X−1 is the distribution of X, denoted PX . Please keep in mind that the distribution
of X still depends on the underlying probability measure P we use here.

Example 1.2.1. 1. Take B ⊂ R a Borel set, an event [X ∈ B] = {ω ∈ Ω : X(ω) ∈ B} = X−1(B) and
P{ω ∈ Ω : X(ω) ∈ B} = P[X ∈ B] = P ◦X−1(B) = PX(B). PX is distribution of X.

2. (Ω,F , µ) an arbitrary measure space. A ∈ F , what is µ ◦ I−1
A ? Take B ⊂ R a Borel set

µ ◦ I−1
A (B) =


0, if {0, 1} ∩B = ∅
µ(A), if {0, 1} ∩B = {1}
µ(Ac), if {0, 1} ∩B = {0}
µ(Ω), if {0, 1} ∩B = {0, 1}

= µ(A)δ1(B) + µ(Ac)δ0(B)

3. m is Lebesgue measure and f : R→ R. Assume f is strictly increasing and continuous differentiable and
∀x ∈ R, Df(x) 6= 0. f(−∞) = −∞, f(∞) =∞. Then f is 1-1 and onto, f−1 exists. m ◦ f−1([a, b]) =∫ b
a
D(f−1)(x)dx. This gives m ◦ f−1 for intervals. This involves formulating Jacobians. Note that

with f having some propositions, f−1([a, b]) = [f−1(a), f−1(b)], m ◦ f−1([a, b]) = m[f−1(a), f−1(b)] =
f−1(b)− f−1(a). So this results follows by the fundamental theorem of calculus.

Remark. Underlying Probability Spaces

1. (Ω,F ,P) is a probability space with P(Ω) = 1, P is probability measure on real numbers.

2. Elements of F (Measurable sets) are events. F is the collection of events.

3. Ω is the sample space. (underlying space)

4. ∅ ∈ Ω, that is to say, Ω ∈ F

5. Given any set Ω, the most trivial (smallest) σ-field is F = {∅,Ω}. The power set P(Ω) = {A : A ⊂ Ω}
consisting all subsets of Ω is the largest σ-field on Ω. (2Ω) It is easy to prove that the F is a σ-field.

(a) ∅ ∈ F
(b) A ∈ F implies Ac = Ω \A ∈ F
(c) A1, A2, · · · in F implies

⋃
n
An ∈ F

Given any A ⊂ P(Ω), σ(A) is the smallest σ-field containing A.

1.2.3 The Definition of an Integral

See Jun Shao 1.2, Robert Ash 1.5, and Patrick Billingsley Ch15. Expected values of simple random variables
and Riemann integrals of continuous functions can be brought together with other related concepts under
a general theory of integration. Here we consider a measure (Ω,F , µ) and f : Ω → R̄ for extended borel
measurable functions. Note that ∞−∞ is undefined, and it’s a main issue with when

∫
fdµ is undefined.

We will define
∫
fdµ in three steps.

1. nonnegative simple function: f = φ(ω) =
n∑
i=1

aiIAi(ω), a canonical form of simple functions.
∫
φdµ =

n∑
i=1

aiµ(Ai) for all ai > 0. Note that there is no problem with ∞−∞ in the summation. This result

will be ∞ for some i, ai > 0 and µ(Ai) = ∞. (
∫
IAdµ = µ(A), so

∫
φdµ =

∑
ai
∫
IBidµ by linearity

property.)
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2. nonnegative general function: ∀ω ∈ Ω, f(ω) ≥ 0 or (f ≥ 0):
∫
fdµ = sup{

∫
φdµ : φ is a simple function with 0 ≤

φ ≤ f}. (It is equivalent to the collection of nonnegative simple functions). In words,
∫
fdµ is the

supremum (least upper bound) of all integrals of nonnegative simple functions which are below f .∫
φdµ ≤

∫
fdµ. Note that the set of the simple functions is nonempty since it contains I∅ = 0. Also,∫

fdµ =∞ is possible.

3. general function: For general f , f = f+( the positive part of f) = f−( the negative part of f), f+, f− ≥
0. f+(ω) = max{f(ω), 0}, f−(ω) = −(f(ω))+ = −min{f(ω), 0} = max{−f(ω), 0}. Note that f+, f−
are Borel functions, f(ω) = f+(ω)− f−(ω), |f(ω)| = f+(ω)− f−(ω). Then,

∫
fdµ =

∫
f+dµ−

∫
f−dµ.

It exists/is defined iff at least one of
∫
f+dµ and

∫
f−dµ is finite (By step 2), and integrable iff both∫

f+dµ and
∫
f−dµ are finite.

Finally, we define the integral of f over the set A ∈ F as
∫
A
fdµ =

∫
IAfdµ (Just follow the Example 1.2.2-3

to prove fIA is Borel measurable.)

Example 1.2.2. 1. Ω = R, µ = m Lebesgue measure, φ = 1
2I[0,1] + 3

4I(1,2],
∫
φdm = 1

2m([0, 1]) +
3
4m((1, 2]) = 1

2 + 3
4 = 5

4 =
∫ 2

0
φ(x)dx =

∫∞
−∞ φ(x)dx (Note: step function is a type of simple function.

Then we can see that the Lebesgue integral is more powerful than Riemann integral with simple integral
and sum of rectangles under the curve, that is, a step function.)

2. We could define Riemann integral
∫
f(x)dx = sup{

∫
ψ(x)dx : ψ is a step function. 0 < ψ < f}. It’s

a subset of simple function, could replace ψ with φ. If Riemann integral
∫
R f(x)dx exist, it equals

Lebesgue integral
∫
fdm, f > 0.

Remark. 1. (Ash P.37) {ω : f+(ω) ∈ A} = {ω : f(ω) ≥ 0, f(ω) ∈ A} ∪ {ω : f(ω) < 0, 0 ∈ A}. The
first set is f−1[0,∞] ∩ f−1(A) ∈ F . The first set is f−1[−∞, 0) if 0 ∈ A and ∅ if 0 /∈ A. Therefore,

(f+)−1(A) ∈ F for each A ∈ B(R̂), and similarly for f−, are both Borel measurable.

2. We also note that it is common to write dµ(ω) as µ(dω) as in
∫
f(ω)dµ(ω) =

∫
f(ω)µ(dω). To explain

this notation, if
∑
aiIAi is a simple function approximation to f(x) so that

∫ ∑
aiIAi =

∑
aiµ(Ai)

.
=∫

fdµ, then the values ai will be approximately f(ω) for some ωi ∈ Ai. and the sets Ai will have
small measure. If we write dωi to represent the ”differential” set Ai, then we obtain notationally∑
f(ωi)µ(dωi)

.
=
∫
fdµ. The notation µ(dω) is meant to remind us of the measure of these differential

sets, which are multiplied by f(ω) and summed. We will sometimes use this notation when it helps to
aid understanding.

3. Ω = {a1, a2, · · · }: discrete set (finite or infinite). Take F = P(Ω) as the σ-field, and µ = #, counting
measure. For any f : Ω → R is measurable,

∫
fd# =

∑
i

f(ai). It’s a classical example of measure

theory includes summation and Riemann integral.

4. unit point mass measure:

(a) on a measurable space (Ω,F), if φ =
∑
i

ciIAi is a simple function, then
∫
φdδx =

∑
i

ciδx(Ai) =∑
i

ciIAi(x) = φ(x) ≤ f(x). And taking φ = f(x)I{x}, we get
∫
φdδx = φ(x) = f(x).

(b) If f ≥ 0, sup{
∫
φdδx = φ(x) : 0 ≤ φ ≤ f}. We could get 0 ≤ f(x)I{x} ≤ f . Assuming

f(x) < ∞, {x} ∈ F . (f(x) = ∞, then use sequence of simple function φn = nI{x},
∫
φdδx =

φ(x) = n→∞, 0 ≤ φ ≤ f . That is,
∫
fdδx = f(x).)

(c) f = f+ = f−,
∫
fdδx =

∫
f+dδx =

∫
f−dδx = f+(x)− f−(x) = f(x) That is,

∫
fdδx = f(x).
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For a linear combination of unit point mass measure, if µ =
∑
i

aiδxithen
∫
fdµ =

∑
i aif(xi). Let

(x1, · · · , xn) be a dataset, and g is a real valued function defined on the space Ω of possible observations.∫
Ω
g(x)dP̂n(x) =

1

n

n∑
i=1

g(xi). That is, if P is the true probability model for the experiment, E[g(X)] =∫
g(x)dP (x) is used to the sample average

∫
g(x)dP̂n(x), and

∫
g(x)dP̂n(x)→ E[g(x)] as n→∞.

5. Show dummy variables:
∫
f(·, θ)dm, x integrated out here, and it would be as a function of θ.

Riemann Integral: Step function ψ(x) =
n∑
i=1

ciI[ai−1,ai)(x), a0 < a1 < · · · < an. it’s a kind of simple

function where Ai are required to be intervals. [a0, a1), · · · , [an−1, an) form a partition of [a0, an) consisting
of finitely many intervals. Π = max{ai − ai−1 : 1 ≤ i ≤ n} Given Π, the partition and f : [a, b)→ R:

1. upper Riemann integral:
∫̄ b
a
f(x)dx = inf

Π
U(f,Π), U(f,Π) =

n∑
i=1

(
sup

[ai−1,ai]

f

)
(ai−1, ai) =

∫
ψ̄f,Π(x)dx,

where step function ψ̄f,Π(x) =
n∑
i=1

(
sup

[ai−1,ai]

f

)
I[ai−1,ai](x)

2. lower Riemann integral:
∫ b
a
f(x)dx = sup

Π
L(f,Π), L(f,Π) =

n∑
i=1

(
inf

[ai−1,ai]
f

)
(ai−1, ai) =

∫
ψ
f,Π

(x)dx,

where step function ψ
f,Π

(x) =
n∑
i=1

(
inf

[ai−1,ai]
f

)
I[ai−1,ai](x)

The Riemann integral exists when
∫̄ b
a
f(x)dx = inf

Π
U(f,Π) =

∫ b
a
f(x)dx = sup

Π
L(f,Π) = R

∫ b
a
f(x)dx.

We here try to prove that Lebesgue integral is between lower and upper Riemann integral.
∫ b
a
f(x)dx =

sup
ψ
f,Π

∫
ψ
f,Π

(x)dx. Step function, as a subclass of simple function, satisfies the simple function property,

0 ≤ ψ ≤ f on [a, b). Since the supremum of a subset is smaller than a superset,
∫ b
a
f(x)dx ≤

∫
[a,b)

f(x)dm(x).

Each of the step functions φ̄f,Π that goes into the definition of the upper Riemann integral satisfies f ≤
ψ̄f,Π, so

∫
[a,b)

f(x)dm(x) ≤
∫

[a,b)]
ψ̄f,Πdm(x) by proposition below. Then taking infimum over all such step

functions gives
∫

[a,b)
f(x)dm(x) ≤

∫̄
[a,b)]

f(x)dx.

Example 1.2.3. Not all Lebesgue integrable functions are Riemann integrable. Let f(x) = IA(x) be the
indicator of A = {x ∈ [0, 1) : x ∈ Q}, then m(A) = 0. [ai−1, ai) ∈ R+, sup

[ai−1,ai)

= 1 and inf
[ai−1,ai)

= 0. Even

the upper step on [0, 1) =1 and lower step on [0, 1) =0 is allowable in the partition Π of [0, 1), the upper
Riemann integral is 1 and lower Riemann integral =0, and the Riemann integral doesn’t exist.

Example 1.2.4. Improper integral: A integral is improper if it is over an infinite interval or ig the function

is not bounded, e.g. R
∫∞

0
f(x)dx = lim

b→∞
R
∫ b

0
f(x)dx. An improper Riemann integral may exist, but its

Lebesgue integral may fail to exist.

f(x) =


1

n
, if 2n− 1 ≤ x < 2n

− 1

n
, if 2n ≤ x < 2n+ 1

0, if x < 1
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where {n : n ∈ N}. Then for b > 1,

∫ b

0

f(x)dx =


b− (2n− 1)

n
, if 2n− 1 ≤ b < 2n

1− (b− 2n)

n
, if 2n ≤ b < 2n+ 1

Note that |
∫ b

0
f(x)dx| ≤ 1

n
→ 0 as b → ∞. R

∫∞
0
f(x)dx = lim

b→∞
R
∫ b

0
f(x)dx = 0. However, the

Lebesgue integral
∫
f(x)dm(x) =

∫
f+(x)dm(x) +

∫
f−(x)dm(x) does not exist because

∫
f+(x)dm(x) =∫

f−(x)dm(x) =
∞∑
n=1

1

n
=∞, which violates the definition that Lebesgue integral exists/is defined iff at least

one of
∫
f+dµ and

∫
f−dµ is finite (By step 2), and integrable iff both

∫
f+dµ and

∫
f−dµ are finite. That

is, we need the improper Riemann integral should be absolutely convergent.

Example 1.2.5. µ is counting measure on N, µ(A) = # elements in A, f : N → R.
∫
fdµ =

∞∑
k=0

f(k) =

lim
N→∞

N∑
k=0

f(k)

1.2.4 Properties of the integral

Please also follow the reference Jun Shao 1.2, Robert Ash 1.5, and Patrick Billingsley CH15.

Proposition 1.2.3. (Basic properties of the integral): Let (Ω,F , µ) be a measurable space and f, g are
extended Borel functions on Ω. See Billingsley Theorem 15.1 and Cox Proposition 1.2.5

1. If f =
∑
i

xiIAi is a nonnegative simple function, {Ai} being a finite decomposition of Ω into F -sets,

then
∫
fdµ =

∑
i

xiµ(Ai)

Proof. (In Billingsley 15.1) {Bj} a finite decomposition of Ω and let βj be the infimum of f over
Bj . If Ai ∩ Bj 6= ∅, then βj ≤ xi. Therefore,

∑
j

βjµ(Bj) =
∑
ij

βjµ((Ai ∩ Bj)) ≤
∑
ij

xiµ(Ai ∩ Bj) =∑
i

xjµ(Ai)

2. (Monotonicity): ∀ω, 0 ≤ f(ω) ≤ g(ω), then
∫
fdµ ≤

∫
gdµ.

Proof. For 0 ≤ f ≤ g a.e., this would follows Proposition 1.2.4-4. And for general integrable f ≤ g
a.e., f+ ≤ g+ and f− ≥ g− a.e. By step 3 in 1.2.3 The definition of integral,

∫
fdµ =

∫
f+dµ−

∫
f−dµ,

prove it.

3. ∀ω, 0 ≤ fn(ω) ↑ f(ω), then 0 ≤
∫
fndµ ↑

∫
fdµ

Proof. See Billingsley. We need to show
∫
fdµ ≤ lim

n

∫
fdµ, equivalent to lim

n

∫
fdµ ≥ S =

m∑
i=1

viµ(Ai)

and vi = { inf
ω∈Ai

f(ω)}. First, suppose that S is finite and all the vi and µ(Ai) are positive and finite.

∀0 < ε < vi, Ain = [ω ∈ Ai : fn(ω) > vi − ε]. fn ↑ f,Ain ↑ Ai.
∫
fndµ ≤

m∑
i=1

(vi − ε)µ(Ain) →
m∑
i=1

(vi − ε)µ(Ai) = S − ε
m∑
i=1

µ(Ai)
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Next, suppose only S is finite. Each product of viµ(Ai) is then finite. i ≤ m0 is positive and i > m0

is 0. (If m0 < m,S = 0, and trivial.) Now vi, µ(Ai) are positive and finite for i ≤ m0 then replace m
by m0 and follow the same procedure to proof.

For an a.e. version, 0 ≤ fn ↑ f on a set A with µ(Ac) = 0, then 0 ≤ fnIA ↑ fIA and
∫
fndµ =∫

fnIAdµ ↑
∫
fIAdµ =

∫
fdµ

4. (Linearity): for a, b ∈ R,
∫
afdµ = a

∫
fdµ. Also,

∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ

Proof. (In Billingsley 15.1) Suppose at first that f =
∑
i

xiIAi , g =
∑
j

yjIBj , af + bg =
∑
ij

(axi +

byj)IAi∩Bj .
∫

(af + bg)dµ =
∑
ij

(axi + byj)µAi ∩Bj = a
∑
i

xiµ(Ai) + b
∑
j

yjµ(Bj) = a
∫
fdµ+ b

∫
gdµ.

Here we check a = b = 1 is integrable. (f + g)+ − (f + g)− = fg = f+ − f− + g+ − g− and
(f + g)+ + f−+ g− = (f + g)−+ f+ + g+. All of them are nonnegative. Also,

∫
(f + g)+dµ+

∫
f−dµ+∫

g−dµ =
∫

(f + g)−dµ+
∫
f+dµ+

∫
g+dµ. Finally,

∫
(f + g)+dµ−

∫
(f + g)−dµ =

∫
f+dµ−

∫
f−dµ+∫

g+dµ−
∫
g−dµ =

∫
fdµ+

∫
gdµ

5. |
∫
fdµ| ≤

∫
|f |dµ if

∫
fdµ exists.

Proof. Follows the previous properties, it can be easily proved.

Remark. If A is an event with µ(A) = 0 and the statement S(ω) (f is continuous at ω) holds for all ω
in the complement Ac, then the statement is said to hold a.e.µ (almost everywhere). If µ is a probability
measure, a.e. → a.s. (almost surely). e.g. 2 functions f, g. If f = g a.e. (implies

∫
fdµ =

∫
gdµ),

µ({ω : f(ω) 6= g(ω)}) = 0.

Proposition 1.2.4. Almost everywhere: If f, g are extended Borel function on (Ω,F , µ)

1. If f = 0 a.e., then
∫
fdµ=0

Proof. Suppose f = 0 a.e., if Ai meet [ω : f(ω) = 0], then inf
ω∈Ai

f(ω) = 0. Otherwise, µ(Ai) = 0.

Hence,
∑
i

[
inf
ω∈Ai

f(ω)

]
µ(Ai) = 0

2. If [ω : f(ω) > 0],
∫
fdµ > 0

Proof. If Aε ∈ [ω : f(ω) ≥ ε], Aε ↑ [ω : f(ω) > 0] as ε ↓ 0. There exists a ε > 0 for which µ(Aε) > 0.
Decomposing Ω into Aε and its complements shows that

∫
fdµ ≥ εµ(Aε) > 0

3. If
∫
fdµ <∞ then f <∞ a.e.

Proof. If µ[f =∞] > 0, decompose Ω into [f =∞] and its complement:
∫
fdµ ≥ ∞·µ[f =∞] > 0.

4. f ≤ g a.e., then
∫
fdµ ≤

∫
gdµ, provided the integral exist.

Proof. LetG = [f ≤ g], for any finite decomposition [A1, · · · , Am] of Ω,
∑[

inf
Ai
f

]
µ(Ai) =

∑[
inf
Ai
f

]
µ(Ai∩

G) ≤
∑[

inf
Ai∩G

f

]
µ(Ai ∩G) ≤

∑[
inf
Ai∩G

g

]
µ(Ai ∩G) ≤

∫
gdµ. It also shows that if f = g a.e. (implies∫

fdµ =
∫
gdµ).
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5. f ≥ 0, µ a.e. and
∫
fdµ = 0, then f = 0, µ-a.e.

Proof. A = {f > 0}, An = {f > 1

n
}, n = 1, 2, · · · . Then An ⊂ A for any n. By Proposition 1.1.1-3

and Definition 1.1.1-3, lim
n→∞

An = ∪An = A, lim
n→∞

µ(An) = µ(A). And by 1. and Proposition 1.2.3,

1

n
µ(An) =

∫ 1

n
IAndµ ≤

∫
fIAndµ ≤

∫
fdµ = 0.

Remark. 1. Some direct consequences of Proposition 1.2.4-1 are |
∫
fdµ| ≤

∫
|f |dµ; if f ≥ 0 a.e., then∫

fdµ ≥ 0. and if f = g a.e. (implies
∫
fdµ =

∫
gdµ), µ({ω : f(ω) 6= g(ω)}) = 0.

2.
∫

lim
n→∞

fndµ = lim
n→∞

∫
fndµ where {fn : n = 1, 2, · · · } is a sequence of Borel functions. We only require

lim
n→∞

fn (also a Borel function by proposition 1.2.2-3) exists a.e.

Example 1.2.6. {fn : n = 1, 2, · · · } is a sequence of Borel functions on Lebesgue measure (R,B). Let
fn(x) = nI[0, 1

n ](x). Then lim
n→∞

fn(x) = 0,∀x \ {0} ( lim
n→∞

fn =∞ at x = 0). Since m({0}) = 0, we may

say fn → 0 for m-a.e., lim
n→∞

∫
fndm = 1 ,

∫
lim
n→∞

fndm = 0. That is, the interchange is not feasible

here.

3. And, we need Fatou Lemma here, and for Monotone Convergence Theorem and Dominated Conver-
gence Theorem.

Theorem 1.2.5. 1. Fatou’s Lemma: For nonnegative fn,
∫

lim inf
n
fndµ ≤ lim inf

n

∫
fndµ

Proof. If gn = inf
k≥n

fk, then 0 ≤ gn ↑ g = lim inf
n
fn and by Proposition 1.2.3 and 1.2.4,

∫
fndµ ≥∫

gndµ→
∫
gdµ

2. Monotone Convergence Theorem: 0 ≤ f1 ≤ f2 ≤ · · · ≤ fn ≤ · · · , (0 ≤ fn ↑ f), f(ω) = lim
n→∞

fn(ω)

a.e., then

lim

∫
fndµ =

∫
lim fndµ.

Proof. By Proposition 1.2.4-4, there exists

lim
n→∞

∫
fndµ ≤

∫
fdµ.

Let φ be a simple function, 0 ≤ φ ≤ f and let Aφ = {φ > 0}. Suppose that µ(Aφ) = ∞, then∫
fdµ = ∞. Let a = 1

2 min
ω∈Aφ

and An{fn > a}. Then a > 0, A1 ⊂ A2 ⊂ · · · , and Aφ ⊂ ∪An. By

Proposition 1.1.1-1,

µ(An)→ µ(∪An) ≥ µ(Aφ) =∞ and

∫
fndµ ≥

∫
An

fndµ ≥ aµ(An)→∞.

Suppose now µ(Aφ) < ∞, by Egoroff’s Theorem, for any ε > 0, there is B ⊂ Aφ with µ(B) < ε s.t.
fn → f uniformly on Aφ ∩Bc. Hence,∫

fndµ ≥
∫
Aφ∩Bc

fndµ→
∫
Aφ∩Bc

fdµ ≥
∫
Aφ∩Bc

φdµ = inf φdµ−
∫
B

φdµ ≥
∫
φdµ− εmax

ω
φ(ω).
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Since ε is arbitrary, lim
n→∞

∫
fndµ ≥

∫
φdµ. Since φ is also arbitrary, by Definition of Integral 2,

lim
n→∞

∫
fndµ ≥

∫
fdµ.

3. Dominated Convergence Theorem Assume fn → f a.e., and ∃g dominating function s.t. ∀n, |fn| ≤
g a.e.&

∫
gdµ <∞ (integrable), then

∫
lim
n→∞

fndµ = lim
n→∞

∫
fndµ

Proof. Applying Fatou’s Lemma to functions g + fn and g − fn. We obtain that∫
gdµ+

∫
lim inf

n
fndµ =

∫
lim inf

n
(g + fn)dµ

≤ lim inf
n

∫
(g + fn)dµ =

∫
gdµ+ lim inf

n

∫
fndµ

and ∫
gdµ−

∫
lim sup

n
fndµ =

∫
lim sup

n
(g − fn)dµ

≤ lim sup
n

∫
(g − fn)dµ =

∫
gdµ− lim sup

n

∫
fndµ.

Therefore, ∫
lim inf

n
fndµ ≤ lim inf

n

∫
fndµ ≤ lim sup

n

∫
fndµ ≤

∫
lim sup

n
fndµ.

Now use asusmptions fn → f a.e., f is dominated by g. Since g is integrable, these results imply that∫
fdµ ≤ lim inf

n

∫
fndµ ≤ lim sup

n

∫
fndµ ≤

∫
fdµ.

That is, Fatou’s Lemma implies DCT.

Remark. Note that for each ω, lim
n→∞

exists, but may be +∞. In DCT, there is no unique g dominating

function, we could choose a convenient one.

Example 1.2.7. Back to
∫
fdδx (unit point mass measure), recall that we assume {x} ∈ F e.f. F = {φ,Ω}.

We don’t need this assumptions by the following explanation. For any f ≥ 0 have simple functions φn s.t.
0 ≤ φn ↑ f . We have

∫
φndµ ↑

∫
fdµ. Thus, we can “calculate”

∫
fdµ using these simple functions instead

of sup{
∫
φdµ : 0 ≤ φ ≤ f}. In particular,

∫
φdδx = φ(x), 0 ≤ φ ↑ f =⇒

∫
φndδx = φn(x)→

∫
fdδx

Proposition 1.2.6. Simple function approximation: Let f : (Ω,F) → (R̄, B̄), f ≥ 0, then ∃φn, a sequence
of simple functions s.t. 0 ≤ φn ↑ f and ∀n, |φn| ≤ |f |. If f ≥ 0 then we may take φn ≥ 0 for all n. Further,
if µ is a measure of (Ω,F) and

∫
fdµ is defined, then

∫
φdµ→

∫
fdµ.

Theorem 1.2.7. Measures Defined by Densities: let f : (Ω,F , µ) → (R̄, B̄) be nonnegative, and put
ν(A) =

∫
A
fdµ,A ∈ F . Show that ν is a measure on (Ω,F)

1. 0 ≤ ν(A) ≤ ∞? Yes, by monotonicity

2. ν(φ) = 0? Yes, Iφ ≡ 0, Iφf ≡ 0
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3. Take ω ∈ Ω, IU (ω) = 1 iff ∃n s.t. ω ∈ An. But there only one such n so that
∑
n
IAn(ω) = 1, I⋃

n
An(ω) =

0 iff all IAn(ω) = 0. Note that I⋃
n
An =

∑
n
IAn by disjointness. Thus, ν(

⋃
n
An) =

∫ ( ∞∑
n=1

IAnfdµ

)

In the context of this theorem, the function f is called the density of ν with respect to (w.r.t.) µ. Sta-
tistical models have possible distributions for Y , a random vector with possible distributions. All having
densities w.r.t. some µ, f(y, θ) where θ is unknown parameter,

∫
f(y, θ)dµ(y) = 1. Most of the probability

measures we use in practice will be constructed through densities, either w.r.t. Lebesgue measure (so-called
continuous distributions) or w.r.t. counting measure (discrete distributions). We will later provide necessary
and sufficient conditions for when one measure has a density w.r.t another measure (the Radon-Nikodym
theorem). This result has many ramifications in probability and statistics.

Theorem 1.2.8. Change of variables: Suppose f : (Ω,F , µ)→ (Λ,G) and g : (Λ,G)→ (R̄, B̄). Then∫
Ω

(g ◦ f)(ω)dµ(ω) =

∫
Λ

g(λ)d(µ ◦ f−1)(λ)

, if either integral is defined, then so is the other and the two are equal.

Proof. First assume g is a nonnegative simple function, say

g(λ) =

n∑
i=1

aiIAi(λ)

where ai ≥ 0,∀i. Then g ◦ f ≥ 0 so both integral exist. Now∫
Ω

(g ◦ f)(ω)dµ(ω) =

∫ ∑
aiIAi(f(ω))dµ(ω) =

∑
ai

∫
IAi(f(ω))dµ(ω)

by linearity property. Note that IA(f(ω)) = 1 iff f(ω) ∈ A iff ω ∈ f−1(A) iff If−1(A)(ω) = 1, so IA ◦ f =
If−1(A). Using this, ∫

Ω

(g ◦ f)(ω)dµ(ω) =
∑

ai

∫
IAi(f(ω))dµ(ω)

=
∑

ai

∫
If−1(A)(ω)dµ(ω) =

∑
aiµ(f−1(Ai))

=
∑

ai(µ ◦ f−1)(Ai) =
∑

ai

∫
IAid(µ ◦ f−1)

=

∫
gd(µ ◦ f−1).

Now suppose that g ≥ 0. Then both integrals are still defined. Let φn be simple functions with 0 ≤ φn ↑ g
by Proposition 1.2.6. Then ∫

φnd(µ ◦ f−1)→
∫
gd(µ ◦ f−1)

by MCT. IA ◦ f = If−1(A) shows that φn ◦ f are nonnegative simple functions on Ω, 0 ≤ φn ◦ f ↑ g ◦ f , so∫
(φn ◦ f)dµ→

∫
(g ◦ f)dµ
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by MCT. Since
∫

(φn ◦ f)dµ =
∫
φnd(µ ◦ f−1) by the first part of proof, we have

∫
(g ◦ f)dµ =

∫
gd(µ ◦ f−1)

Now let g be a general extended Borel function on Λ and consider g+, g−. (g◦f)+ = g+◦f and (g◦f)− = g−◦f ,
by previous part of the proof and the nonnegative function,∫

(g ◦ f)+dµ =

∫
g+d(µ ◦ f−1),

∫
(g ◦ f)−dµ =

∫
g−d(µ ◦ f−1).

Hence, if say
∫

(g ◦ f)−dµ < ∞, so that the
∫

Ω
(g ◦ f)(ω)dµ(ω) is defined, then

∫
g−d(µ ◦ f−1) < ∞ and∫

Λ
g(λ)d(µ ◦ f−1(λ) is defined, and∫

g ◦ fdµ =

∫
(g ◦ f)+dµ−

∫
(g ◦ f)−dµ =

∫
g+d(µ ◦ f−1)−

∫
g−d(µ ◦ f−1) =

∫
gd(µ ◦ f−1).

A similar argument applies if
∫

(g ◦ f)+dµ < ∞, which is the other way
∫

Ω
(g ◦ f)(ω)dµ(ω) can exist.∫

Λ
g(λ)d(µ ◦ f−1(λ) exists just in case one of g+d(µ ◦ f−1) <∞ or

∫
g−d(µ ◦ f−1) <∞, and the proof goes

through without difficulty again.

Remark. Start with simple functions, use Proposition 1.2.6 and Theorem 1.2.5 to extend to nonnegative
functions, and finally to general functions using the decomposition into positive and negative parts.

Example 1.2.8. We briefly indicate the importance of Theorem 1.2.8. Let (Ω,F ,P) be a probability space
and X a r.v. defined thereon. If E[X] = XdP exists, then

∫
fE[X] by

∫
R
xdPX(x) where PX = P ◦ X−1

is the distribution of X. Thus, we compute an integral over the real line rather than an integral over the
original probability space. If X : Ω → R, Y : Ω → R, g : R → R, then E[g(X)] is typically computed as∫
R g(x)dPX(x) rather then

∫
R ydPg(X)(y), i.e. one integrates w.r.t. the distribution of the original r.v. X

rather than w.r.t. the distribution of g(X). Theorem 1.2.8 is used so often by statisticians without giving it
any thought that it is sometimes referred to as “the law of the unconscious statistician.” It should be noted
that calculation of µ ◦ f−1 may be complicated, e.g. involving Jacobians, a subject treated in Chapter 2,
Section 2.4.

Theorem 1.2.9. interchange of differentiation and integration: Let (Ω,F , µ) and suppose g(ω, θ) is
a real valued function on the cartesian product space Ω × (a, b) where (a, b) is a finite open interval in R.
Assume g satisfies:

1. For each fixed θ ∈ (a, b), the function fθ(ω) = g(ω, θ) is a Borel function of ω and
∫
|g(ω, θ)|dω <∞

2. a null set N s.t. ∀ω /∈ B,
∂g(ω, θ)

∂θ
exist for all θ ∈ (a, b)

3. an integrable function G : Ω→ R̄ s.t. ∀ω /∈ N and all θ ∈ (a, b),

∣∣∣∣∂g∂θ (ω, θ)

∣∣∣∣ ≤ G(ω)

Then for each fixed θ ∈ (a, b),
∂g

∂θ
(ω, θ) is integrable w.r.t µ and

d

dθ

∫
Ω
g(ω, θ)dµ(ω) =

∫
Ω

∂g

∂θ
(ω, θ)dµ(ω)

Proof. Let H(θ) =
∫
g(ω, θ)dµ(ω). Suppose ω /∈ N , then by the mean value theorem, if θ ∈ (a, b) and

θ + δ ∈ (a, b), then
g(ω, θ + δ)− g(ω, θ)

δ
=
∂g

∂θ
(ω, θ + αδ) for some α ∈ [0, 1], and in particular ∀ω /∈ N ,∣∣∣∣g(ω, θ + δ)− g(ω, θ)

δ

∣∣∣∣ ≤ G(ω). Now let ηn be any sequence in R converging to 0. Then by Proposition 1.2.4,

H(θ + ηn)−H(θ)

ηn
=
∫ g(ω, θ + ηn)− g(ω, θ)

ηn
dµ(ω). Thus, we have for each fixed θ ∈ (a, b), the sequence
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of functions fn(ω) =
g(ω, θ + ηn)− g(ω, θ)

ηn
converges µ-a.e. to

∂g(ω, θ)

∂θ
. And by

∣∣∣∣g(ω, θ + δ)− g(ω, θ)

δ

∣∣∣∣ ≤
G(ω), |fn| ≤ G, µ-a.e., and G is µ-integrable by assumption. Hence, by DCT,

∫
fndµ →

∫ [∂g(ω, θ)

∂θ

]
dµ,

i.e. lim
n→∞

H(θ + ηn)−H(θ)

ηn
=
∫

Ω

∂g

∂θ
(ω, θ)dµ(ω). Since the sequence ηn → 0 was arbitrary, it follows that

lim
δ→0

H(θ + ηn)−H(θ)

δ
=
∫

Ω

∂g

∂θ
(ω, θ)dµ(ω). The equation just before this equation states that H(θ) is

differentiable and the derivative is the right hand side.
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1.3 Measures on Product Spaces

The Cartesian product of sets Γi is defined as the set of all (a1, a2, · · · ), ai ∈ Γi, and is denoted by∏
i∈{1,2,··· }

Γi = Γ1 × Γ2 × · · · . Given measurable spaces (Ωi,Fi), i = 1, 2, · · · . Since
∏

i∈{1,2,··· }
Fi is not

necessarily a σ-field, σ

( ∏
i∈{1,2,··· }

Fi

)
is called the product σ-field on the product space

∏
i∈{1,2,··· }

Ωi and( ∏
i∈{1,2,··· }

Ωi,
∏

i∈{1,2,··· }
Fi

)
is denoted by

∏
i∈{1,2,··· }

(Ωi,Fi)

A measure space (Λ,G, µ) with Λ ∈ Bn and G = {B ∩ Λ : B ∈ Bn} is called a Euclidean Space, which is
usually used in most of the statistical application.

1.3.1 Definitions and Results

Definition 1.3.1. A measure space (Ω,F , µ) is called a σ-finite iff there is an infinite sequence A1, A2, · · ·
in F s.t.

1. µ(Ai) <∞

2.
∞⋃
i=1

Ai = Ω

Any finite measure (e.g. probability measure) is σ-finite, since R = ∪An. The counting measure is σ-finite
iff Ω is countable.

Example 1.3.1. f ≡ ∞, ν(A) =
∫
Adµ. This fives non-σ-finite measure where

ν(A) =

{
∞, if µ(A) > 0

0, if µ(A) = 0

Theorem 1.3.1. Product Measure Theorem: Let (Ωi,Fi, µi) be measure spaces with σ-finite measures
(that is, they are σ-finite measure spaces). There exists a unique σ-finite measure on the product σ-field

σ

( ∏
i∈{1,2,··· }

Fi

)
, called the product measure and denoted by µ1 × µ2 × · · · s.t. µ1 × · · · × µk(A1 × · · ·Ak) =

µ1(A1)× · · ·µk(Ak), for all Ai ⊆ Ωi(Ai ∈ Fi)
Example 1.3.2. The usual length of an interval [a, b] ⊂ R is the same as the Lebesgue measure of [a, b].
Consider a measurable rectangle [a1, b1]×[a2, b2] ⊂ R2, the usual area of [a1, b1]×[a2, b2] is (b1−a1)(b2−a2) =
m([a1, b1])m([a2, b2]), i.e. the product of the Lebesgue measures of two intervals [a1, b1] and [a2, b2]. Note
that [a1, b1]×[a2, b2] is a measurable set by the definition of the product σ-field. We need the above definition
and theorem to verify the above calculation.

In R2, there is a unique measure, the product measure m×m = m2, m2([a1, b1]×[a2, b2]) = (b1−a1)(b2−a2) =
m([a1, b1])m([a2, b2]) on 2-dimensional Lebesgue measure (there also exist n-dimensional Lebesgue measure
for n ∈ N which is similarly defined.)

Example 1.3.3. µi are counting measures on N, µ1 × µ2 is counting measure on N× N. Take A1, A2 ⊆ N,
the number of elements in A1 ×A2 is the number of elements in A1× the number of elements in A2

Note. 1. Trivial isomorphism: Ω1 ×Ω2
∼= Ω2 ×Ω1, there exists one to one mapping (ω1, ω2) 7→ (ω2, ω1).

2. Higher dimensional Lebesgue measure mn, we have n-dimensional volume
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1.3.2 Integration with Product Measures

Theorem 1.3.2. Fubini’s theorem (Fubini-Tonelli’s theorem): Let µi be a σ-finite measure on

(Ωi,Fi), i = 1, 2, and let f be a Borel function on
2∏
i−1

(Ωi,Fi). Suppose that f is either nonnegative or

integrable w.r.t. µ1 × µ2. (
∫
fd(µ1 × µ2) exists) Then g(ω2) =

∫
Ω1
f(ω1, ω2)dµ1(ω1) exists a.e. µ2 and

defines a Borel function on Ω2 whose integral w.r.t. µ2 exists, and∫
Ω

f(ω)dµ(ω) =

∫
Ω1×Ω2

f(ω1, ω2)d(µ1 × µ2)(ω1, ω2) =

∫
Ω2

[∫
Ω1

f(ω1, ω2)dµ1(ω1)

]
dµ2(ω2) (1.1)

This result can be extended to the integral w.r.t. the product measure on
k∏
i=1

(Ωi,Fi) for k ∈ N

Example 1.3.4. Let Ω1 = Ω2 = {0, 1, 2, · · · } and µ1 = µ2 = #. One can check that #×# on N× N is #
on N2. A function f(i, j) ≥ 0 or

∫
|f |d(µ1 × µ2) <∞ defines a double sequence, then∫

fd(µ1 × µ2) =

∫
fd# =

∫ [∫
f(i, j)d#(i)

]
d#(j) =

∞∑
i=0

∞∑
j=0

f(i, j) =

∞∑
j=0

∞∑
i=0

f(i, j)

Thus we have shown a well known fact from advanced calculus: if a double series is absolutely summable

(i.e.
∞∑
i=0

∞∑
j=0

|f(i, j)| < ∞ holds), then it can be summed in either order. In fact, by Fubini’s theorem, it

suffices for either the sum of the positive terms to be finite or the sum of the negative terms to be finite.
That some condition is required for interchanging the order of the summations

1.3.3 Random Vectors and Stochastic Independence

A function X: (Ω,F ,P)→ Rn is a n dimensional random vector. P ◦X−1 on Rn is called the distribution or
law if X and is denoted PX or Law[X]. We will write a vector as a column vector or as an ordered n–tuple,
i.e.

(x1, x2, · · · , xn) =


x1

x2

·
·
·
xn


We need to use the r.h.s. of this last equation wherein x is represented as an n × 1 matrix whenever we
do matrix operations. The component functions (X1, X2, · · · , Xn) of a random n–vector X are random
variables, and their distributions on R1 are referred to as marginal distributions. The distribution of X on
Rn is sometimes referred to as the joint distribution of (X1, X2, · · · , Xn).

The random variables (X1, X2, · · · , Xn) are said to be (jointly) independent iff for all B1, B2, · · · , Bn ∈ B,

P{X1 ∈ B1, · · · , Xn ∈ Bn} =
n∏
i=1

P{Xi ∈ Bi}. This definition extends to arbitrary random elements

(X1, X2, · · · , Xn). This last displayed equation is equivalent to
n∏
i=1

P{Xi ∈ Bi} = (P ◦ X−1)(
n∏
i=1

Bi) =

n∏
i=1

(P ◦X−1)(Bi)
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Proposition 1.3.3. Let X = (X1, X2, · · · , Xn) be a random vector. Then (X1, X2, · · · , Xn) are independent

iff Law[X] =
n∏
i=1

Law[Xi]

Proof. Suppose (X1, X2, · · · , Xn) are jointly independent, so P{X1 ∈ B1, · · · , Xn ∈ Bn} =
n∏
i=1

P{Xi ∈ Bi}

holds for all B1, B2, · · · , Bn ∈ B. Note that the l.h.s. of P{X1 ∈ B1, · · · , Xn ∈ Bn} is the joint distribution
P =Law[X] evaluated at the rectangle set B1×B2×· · ·×Bn, and this equals the product of the corresponding
measures of the factor sets. Since this holds for arbitrary rectangle sets, it follows that P◦X−1 =

∏
(P ◦X−1

i )
by uniqueness in the Product Measure Theorem. Conversely, if P ◦ X−1 =

∏
(P ◦ X−1

i ), then P{X1 ∈

B1, · · · , Xn ∈ Bn} =
n∏
i=1

P{Xi ∈ Bi} holds for all B1, B2, · · · , Bn by the definition of the product measure,

and hence X1, X2, · · · , Xn are jointly independent.

We say X1, X2, · · · , Xn are pairwise independent iff for all i 6= j, the pair Xi and Xj are independent. Joint
independence implies pairwise independence, but the converse is false. The following result gives some useful
consequences of independence.

Theorem 1.3.4. Let X and Y be random elements defined on a common probability space.

1. For all appropriate sets A,B, P[X ∈ A&Y ∈ B] = P[X ∈ A]P[Y ∈ B], P[(X,Y ) ∈ A × B] =
PXY (A×B) = PX(A)PY (B) by property of product measure.

2. If X and Y are independent, then so are g(X) and h(Y ) where g and h are appropriately measurable
functions.

3. If g and h in (1) are real-valued, then E[g(X)h(Y )] = E[g(X)]E[h(Y )]

Proof. 1. Skip.

2. X,Y are independent if and only if X−1(A) and Y −1(B) are independent for all Borel measurable set
A,B. Consider (g◦X)−1(A) = X−1(g−1(A)) (which is equivalent to [X ∈ g−1(A)]) and (h◦Y )−1(A) =
Y −1(h−1(B)) (which is equivalent to [Y ∈ h−1(B)]). We could know that P [g(X) = A&h(Y ) = B] =
P [X ∈ g−1(A)&Y ∈ h−1(B)] = P [X ∈ g−1(A)]P [Y ∈ h−1(B)] = P [g(X) = A]P [h(Y ) = B]

3. Let P = Law[g(X)] and Q = Law[h(Y )]. By (1), Law[g(X), h(Y )] = P × Q. By Change of Variable
theorem (Theorem 1.2.8)

E[g(X)h(Y )] =

∫
R2

g · hd(P ×Q)(g, h) =

∫
R

[∫
R
g · hdP (g)

]
dQ(h) (by Fubini’s theorem)

=

∫
R

[∫
R
gdP (g)

]
hdQ(h) (by Proposition 1.2.3-(4), h can be factored out of the integral of P (g))

=

[∫
R
gdP (g)

]
·
[∫

R
hdQ(h)

]
(by Proposition 1.2.3-(4),

∫
gdP (g) is a constant)

= E[g(X)] · E[h(Y )]

Definition 1.3.2. Events A,B (subsets of underlying sample space) are independent iff IA, IB are indepen-
dent.
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If A,B are independent events, P[A ∩ B] = E[IA∩B ] = E[IAIB ]. IA(ω)IB(ω) = 1 iff (ω ∈ A&ω ∈ B) iff
(ω ∈ A ∩ B) iff IA∩B(ω) = 1. A&B are independent events iff IA, IB are independent random variables
(Bernoulli random variables) iff PIA × PIB = PIAIB .

PIA = P(Ac)δ0 + P(A)δ1

PIAIB = P(A ∩B)δ(1,1) + P(A ∩Bc)δ(1,0) + P(Ac ∩B)δ(0,1) + P(Ac ∩Bc)δ(0,0)

PIA × PIB = (P(Ac)δ0 + P(A)δ1)× (P(Bc)δ0 + P(B)δ1)

= P(Ac)(Bc)(δ0 × δ0) + P(A)(Bc)(δ1 × δ0) + P(Ac)(B)(δ0 × δ1) + P(A)(B)(δ1 × δ1)

That is, coefficient of δ(1,1) match. i.e. P(A ∩B) = P(A)P(B), i.e. independent of IA, IB → independent of
events A,B. This also implies [Independent of A,Bc] & [Independent of Ac, B] & [Independent of Ac, Bc].
Also implies for four coefficient of δ(0,0),δ(0,1), δ(1,0), δ(1,1)

Remark. 1. δx × δy = δ(x,y)

Proof. Defining product measure

(δx × δy)(A×B) = δx(A)δy(B) =

{
1, if x ∈ A&y ∈ B
0, else

δ(x,y)(A×B) =

{
1, if (x, y) ∈ A×B
0, else

(x, y) ∈ A×B iff x ∈ A and y ∈ B

2. Another fact: ν × (µ1 + µ2) = (ν × µ1) + (ν × µ2)

[ν × (µ1 + µ2)](A×B) = ν(A)[(µ1 + µ2)(B)] = ν(A)[µ1(B) + µ2(B)]

= ν(A)µ1(B) + ν(A)µ2(B) = (ν × µ1)(A×B) + (ν × µ1)(A×B)

= [(ν × µ1) + (ν × µ2)](A×B)

3. (aν)× µ = a(ν × µ)

4. While we generally avoid checking measurability in this text, the following shows that measurability
w.r.t. a product σ-field on the range space follows from measurability of the component functions w.r.t.
the factor σ-fields. Suppose f : Ω→ Λ1×Λ2 is any function. Define the projections πi : Λ1×Λ2 → Λi,
πi(λ1, λ2 = λi, and the coordinate or component functions of f by fi(ω) = (πi ◦ f)(ω) = πi(f(ω)). So
we may write f in ordered pair notation by f(ω) = (f1(ω), f2(ω)).

5. δa × δb = δ(a,b). (aµ1 + bµ2)× µ3 = a(µ1 × µ3) + b(µ2 × µ3) for all a, b are nonnegative.

Theorem 1.3.5. Suppose f : Ω→ Λ1×Λ2 where (Ω,F), (Λ1,G1) and (Λ2,G2) are measurable spaces. Then
f is measurable from (Ω,F) to (Λ1,G1)× (Λ2,G2) iff each coordinate function fi is measurable (from (Ω,F)
to (Λi,Gi) for i = 1, 2.
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1.4 Densities and The Radon-Nikodym Theorem

1.4.1 Absolute Continuity and Singularity

(Billlingsley Section 32) Measures µ and ν on (Ω,F) are by definition mutually singular if they have disjoint
supports— that is, if there exist sets Sµ and Sν such that{

µ(Ω− Sµ) = 0, ν(Ω− Sν) = 0,

Sµ
⋂
Sν = ∅

(1.2)

In this case µ is also said to be singular with respect to ν and ν singular with respect to µ. Note that
measures are automatically singular if one of them is identically 0.

A finite measure on R1 with distribution function f is singular with respect to Lebesgue measure in the sense
of (1.2) if and only if f ′(x) = 0 except on a set of Lebesgue measure 0. The latter condition was taken as
the definition of singularity, but of course it is the requirement of disjoint supports that can be generalized
from R1 to an arbitrary Ω.

The measure ν is absolutely continuous w.r.t. µ if for each A ∈ F , µ(A) = 0 =⇒ ν(A) = 0. In this case ν
is also said to be dominated by µ, and the relation is indicated by ν � µ. If ν � µ and µ� ν, the measures
are are equivalent, indicated by ν ≡ µ.

A finite measure on the line is by Billingsley Theorem 31.7 absolutely continuous in this sense with respect to
Lebesgue measure if and only if the corresponding distribution function f satisfies the Billingsley condition
(31.28). The latter condition, taken in Billingsley Section 31 as the definition of absolute continuity, is again
not the one that generalizes from R1 to Ω.

There is an ε − δ idea related to the definition of absolute continuity given above. Suppose that for every
ε there exists a δ such that ν(A) < ε if µ(A) < δ. If this condition holds, µ(A) = 0 implies that ν(A) < ε
for all ε, and so ν � µ. Suppose, on the other hand, that this condition fails and that ν is finite. Then for
some ε there exist sets An such that µ(An) < n−2 and ν(An) ≥ ε. If A = lim sup

n
An, then µ(A) = 0 by the

first Borel-Cantelli lemma (which applies to arbitrary measures), but ν(A) ≥ ε > 0 which applies because
ν is finite. Hence ν � ν fails, and so ν(A) < ε if µ(A) < δ follows if ν is finite and ν � µ. If ν is finite,
in order that ν � µ is therefore necessary and sufficient that for every ε there exist a satisfying ν(A) < ε
if µ(A) < δ. This condition is not suitable as a definition, because it need not follow from ν � µ if ν is infinite.

(D.D. Cox)

Logical statement Q(f), f is a function. Assume µ, ν fixed and have a statement Q(f) : “f is a density of
ν w.r.t µ”, i.e. ∀A, ν(A) =

∫
A
fdµ, f ≥ 0 e.g. “f is the density for N(0, 1) w.r.t. m” = Q(f) is true for

f(x) =
1√
2π

exp

(
−x2

2

)
, is false for f(x) = I(0,1)(x). Claim that if g is any other density for N(0, 1) w.r.t.

m, then g(x) =
1√
2π

exp

(
−x2

2

)
m-a.e. More generally, if f is Q(f)=“f is a density of ν w.r.t. µ”. If Q(f)

& Q(g), then f = g µ-a.e. Provided µ satisfies the condition of being σ-finite.

Definition 1.4.1. Let µ and ν be measures on (Ω,F). We say ν is absolutely continuous w.r.t. µ and
write ν � µ iff for all A ∈ F , µ(A) = 0 implies ν(A) = 0. We sometimes say µ dominates ν, or that µ is a
dominating measure for ν. We say ν and µ are equivalent (and write ν ∼= µ) iff both ν � µ and µ� ν.
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In words, ν � µ if the collection of µ-null sets is a subcollection of the collection of ν-null sets, i.e. ν
“has more null sets than” µ. If (Ω,F , µ) is a measure space and f : Ω → [0,∞) is Borel measurable, then
ν(A) =

∫
fdµ defines a measure ν on the same measurable space (Ω,F). It is easy to show that ν � µ. It

turns out that a converse is true also, provided µ is σ–finite.

Assume ∀
∫
A
fdµ =

∫
A
gdµ, f is unique here. e.g. A = {f > g},

∫
A
fdµ =

∫
A
fdµ,

∫
A

(f − g)dµ = 0 only if∫
A
gdµ is finite. (f − g) is nonnegative on A. If an integral of a nonnegative function is 0, then the function

is 0 a.e. Thus, IA(f − g) = 0 is µ-a.e. Similarly, B = {g > f}, Ω = A∪B ∪ {g = f}. {g = f}c = A∪B is µ
measure 0 since f − g > 0, IA = 0 µ-a.e.

Using σ-finiteness of µ, we can eliminate the
∫
A
gdµ <∞ and

∫
B
fdµ <∞

Counterexample: µ =∞ ·m, µ(A) =∞ under m(A) = 0 density of µ w.r.t. µ is 2.∫
A

2dµ = 2µ(A) =

{
0, if m(A) = 0

∞, if m(A) > 0

all so g(x) ≡ 1 is a density of this µ w.r.t. itself.

1.4.2 Basic Definition and Result

When does a measure ν have a density w.r.t. µ (σ-finite)? Necessary condition: If µ(A) = 0, then ν(A) = 0.
If ν(A) =

∫
A
fdµ for some f , ν(A) =

∫
A
fdµ = 0 since µ(A) = 0. ν is absolutely continuous (or is dominated

by) µ iff measurable sets A, ∀A, µ(A) = 0 =⇒ ν(A) = 0

Theorem 1.4.1. (Radon-Nikodym Theorem): Let (Ω,F , µ) be a σ-finite measure space and ν � µ.
Then there us a nonnegative Borel function f s.t. ∀A,

∫
A
fdµ = ν(A). Furthermore, f is unique µ-a.e. if

ν(A) =
∫
gdµ for all A ∈ F , then g = f µ-a.e.

The function f is called the Radon-Nikodym derivative or density of ν w.r.t. µ, and is often denoted
dν/dµ.

ν(A) =

∫
IAdν =

∫
IAfdµ =⇒ dν = fdµ

If µ = m is a Lebesgue measure, then f is called a Lebesgue density or a density of the continuous type. We
say a random variable X is a continuous random variable iff Law[X] has a Lebesgue density, and we refer
to this density at the density of X and will often write

fX(x) =
dLaw[X]

dm
(x) =

dν

dµ
(x)

Similarly, if X is a random n-vector and Law[X]� mn, then we say X is a continuous random vector with
a similar notation for its Lebesgue density, which is sometimes also called a density of the continuous type.
We have

ν(A) =

∫
A

1dν =

∫
A

dν

dµ
dµ =

∫
A

dν(ω)

dµ(ω)
dµ(ω)

Notice how the dµ’s “cancel” on the r.h.s., that is,
∫
A

dν

dµ
dµ =

∫
A

1dν = ν(A) by dµ’s “cancel”. Also, the

Radon-Nikodym derivative is only determined µ-a.e., i.e. we can change its value on a set of µ-measure 0 and
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not change the measure ν defined by the density. A particular choice for the function
dν

dµ
is called a version

of the Radon-Nikodym derivative. Two versions of
dν

dµ
are equal µ-a.e. Another way we will sometimes

indicate a Radon-Nikodym derivative is the following notation, i.e.
∫
φdν =

∫
φfdµ is true for φ = IA / true

for simple functions / true for general functions,
∫
· · · dν =

∫
· · · fdµ. That is, dν = fdµ.

Example 1.4.1. Let Ω = {a1, a2 · · · } be a discrete set (finite of infinite), and let µ be a measure on
(Ω,P(Ω)). Put f(a) = µ({a}), then we claim that dµ/d# = f , µ� #, where # is counting measure on Ω.
By definition of measure,

µ(A) =
∑
ai∈A

µ({ai}) =
∑
ai∈A

f(ai) =

∫
fd#

In this context, it is sometimes said that f is a density of the discrete type for µ. If µ is a probability
measure, the density of the discrete type is also sometimes called the probability mass function (p.m.f.)
f(n) = P[X = n] if dµ/d# = f exists. If a random variable has a distribution which is dominated by
counting measure, then it is called a discrete random variable.

Recall that a unit point mass measure at ω is given by

δω(A) =

{
1, if ω ∈ Ai
0, otherwise

Then a measure can be written as µ =
∑
i

f(ai)δai . The following example shows that point mass measures

can be useful components of dominating measures for distributions which arise in applied statistics.

Example 1.4.2. censored random variable: X = min{Y,C}, C is censoring time, Y ∼ Exp(λ) is a

nonnegative random variable. e.g. PY has Lebesgue density fY (y|λ) =
1

λ
exp

(
− y
λ

)
I(0,∞)(y). P[Y ≥ C] =

exp

(
−C
λ

)
=⇒ P[X = C] = PX({C}) > 0, but m({C}) = 0, =⇒ PX 6� m, that is, there is no Lebesgue

measure for PX . PX doesn’t have Lebesgue density. But X does have a density w.r.t. the dominating
measure µ = m+ δC , δC(A) = IA(C).

fX(x|λ) =
dLaw[X]

dµ
(x) =

dPX
dµ

(x) =


fY (x), if x < C

exp

(
−C
λ

)
, if x = C

0, otherwise

That is, if x ≥ C, then P[X ≤ x] = 1. To verify this, we will show

FX(x), c.d.f. of X =

∫ x

−∞
fX(z)dµ(z) =


0, if x ≤ 0

1− exp
(
−x
λ

)
= FY (x), if 0 ≤ x ≤ C

1, if x ≥ C

FX(·) is given by formula FX(x) = P[X ≤ x] = P[X ∈ (−∞, x]]. If x < C, then X = Y (not censored).
Thus, the r.h.s. = P[Y ≤ x] = FY (x).

Now verify that integral gives same formula
∫ x
−∞ fX(z)dµ(z) =

∫ x
−∞ fX(z)dm(z) +

∫ x
−∞ fX(z)dδC(z) (By

homework in 1.2)∫ x

−∞
fX(z)dm(z) =

FY (x), if x < C (since fX(z) = fY (z) if z < C)

FY (C) = 1− exp

(
−C
λ

)
, if x ≥ C (since fX(z) = 0 if z > C)



Lecture 1: Measure Space 1-25

Note that fX(C) = 0 in Lebesgue density.

∫ x

−∞
fX(z)dδC(z) = I(∞,x](C)fX(C) =

0, if x < C

exp

(
−C
λ

)
, if x ≥ C

Thus, ∫ x

−∞
fX(z)dµ(z) =

{
FY (x), if x < C

1, if x ≥ C

is a c.d.f.

Example 1.4.3. (An alternative example for Example 1.4.2): Suppose a r.v. X is obtained by measuring the
concentration of a chemical in water, but because of limitations of the measuring instrument, concentrations
less than some amount x0 are reported as x0. Suppose Y is the true concentration, then we might think of
X as given by X = max{x0, Y }. Suppose Y has Lebesgue density

fY (y) =

{
exp(−y), if y > 0

0, otherwise

Then X does not have a Lebesgue density because P [X = x0] = 1 − exp(−x0) but m({x0}) = 0, so we do
not have Law[X]� m. But X does have a density w.r.t. the measure µ = m+ δx0

which is given by

fX(x) =
dLaw[X]

dµ
(x) =


exp(−x), if x > x0

1− exp(−x0), if x = x0

0, otherwise

A useful consequence of Radon-Nikodym Theorem is that if f is Borel on (Ω,F) an d
∫
A
fdµ = 0 for ant

A ∈ F , then f = 0 a.e.

If
∫
fdµ = 1 for an f ≥ 0 is µ-a.e., then ν is a probability measure and f is its probability density function

w.r.t. µ. For any probability measure P on (Rk,Bk) corresponding to a c.d.f. F or a random vector X, if P
has a p.d.f. f w.r.t. a measure µ, then f is also called the p.d.f. of F or X w.r.t. µ.

We said “X does have a density” when we really meant “Law[X] does have a density”. This is a common
abuse of terminology one sees in probability and statistics.

Example 1.4.4. Let F be a c.d.f. Assume that F is differentiable in the usual sense in calculus. Let f be
the derivative of F . From calculus, F (x) =

∫ x
−∞ f(y)dy. Let P be the probability measure corresponding to

F . It can be shown that P (A) =
∫
X
fdm for any A ∈ B, where m is the Lebesgue measure on R. Hence, f

is the p.d.f. of P or F w.r.t. Lebesgue measure. In this case, the Radon-Nikodym derivative is the same as
the usual derivative of F in calculus.

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure. A necessary and sufficient condition
for a c.d.f. F having a p.d.f. w.r.t. Lebesgue measure is that F is absolute continuous in the sense that
for any ε > 0, there exists a δ > 0 such that for each finite collection of disjoint bounded open intervals
(ai, bi),

∑
(bi − ai) < δ implies

∑
[F (bi) − F (ai)] < ε. Absolute continuity is weaker than differentiability,

but is stronger than continuity. Thus, any discontinuous c.d.f. (such as a discrete c.d.f.) is not absolute
continuous. Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung Chapter 1). Hence, if f is
the p.d.f. of F w.r.t. Lebesgue measure, then f is the usual derivative of F a.e. Lebesgue measure. In such
a case probabilities can be computed through integration. It can be shown that the uniform and exponential
c.d.f.’s are absolute continuous. A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
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1. Unif[0, 1], Lebesgue density f(x) = I(0,1)(x) = I[0,1](x), m-a.e.

Proposition 1.4.2. Calculus with Radon-Nikodym derivatives: Let (Ω,F) be a measurable space with
measures µ, ν, ν1, ν2, λ. Assume µ and λ are σ-finite.

1. If ν � µ and f > 0, then
∫
fdν =

∫
f

(
dν

dµ

)
dµ

Proof. The result is obviously true for indicators. Proceed to simple functions, then take limits using
the Monotone Convergence Theorem and Proposition 1.2.6.

2. If ν1 � µ, then ν1 + ν2 � µ and
d(ν1 + ν2)

dµ
=
dν1

dµ
+
dν2

dµ
, µ-a.e.

Proof. Note that ν1 + ν2 is a measure. Now νi � µ for i = 1, 2 implies ν1 + ν2 � µ. If A ∈ F then

ν1 + ν2(A) = ν1(A) + ν2(A) (the definition of ν1 + ν2)

=

∫
A

dν1

dµ
dµ+

∫
A

dν2

dµ
dµ (the definition of

dνi
dµ

)

=

∫
A

[
dν1

dµ
+
dν2

dµ

]
dµ (linearity of the integral)

By uniqueness of the Radon-Nikodym derivative, the integrand
dν1

dµ
+
dν2

dµ
must be a version of

d(ν1 + ν2)

dµ
, as required.

3. (Chain Rule): If ν � µ� λ, then
dν

dλ
=
dν

dµ

dµ

dλ
, λ-a.e. In particular, if µ ∼= ν, then

dν

dµ
=

(
dµ

dν

)−1

(homework)

Note. Part (1) of the this proposition is familiar in the context of probability and statistics in the following
way: if X is a continuous r.v. with Lebesgue density f and g is a Borel measurable function R → R,
then E[g(X)] =

∫
R gdLaw[X] =

∫∞
−∞ g(x)f(x)dx. Note that the first equality is the law of the unconscious

statistician (Theorem 1.2.8, change of variables).

Remark. 1. Statistical Models: We observe a random vector Y . Assume PY is in a family of distri-
butions for a random variable {Pθ : θ ∈ Θ}, Θ: parameter space. We could have a dominated family

iff there exists a σ-finite µ s.t. ∀Pθ, Pθ � µ, then they have densities w.r.t. µ denoted fθ =
dPθ
dµ

by

Radon-Nikodym theorem.

2. Likelihood: Densities as a functions of parameters are likelihoods. Observation y of Y , fθ(y) =
L(θ) = L(θ|y) (for bayesian insight). Typically, we will assume something which is continuous and
differentiable in θ,

What about the different versions of a likelihood? What about dominating measure?
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Example 1.4.5. X ∼ N(µ, 1)

fµ(x) =


1√
2π

exp

(
− (x− µ)2

2

)
, if x 6= 2 + µ

1020, if x = 2 + µ

It is also a version of Lebesgue density, but I cannot get the MLE. Here plug in a value x, fµ(x) is maximized
at x − 2. Thus, typically there is a “regular” version of the density to use. When we start to talk about
asymptotic optimality of MLE, we need to have some assumption of natural likelihood like second derivative,
and we could not use these kinds of “crazy” densities.

Remark. Change of dominated measure: Assume µ� λ, then Pθ � λ. Thus, Lµ(θ) =
dPθ
dµ

, Lλ(θ) =

dPθ
dλ

=
dPθ
dµ

dµ

dλ
= Lµ(θ)

dµ

dλ
. The second element does not depend on θ. It means that I only care about where

the maximum is located (Lµ(θ)), I do not care about the “value” here (Lλ(θ)). Multiplying the likelihood

L(θ) by some functions of x will not change inferences. When I plug in a x,
dµ

dλ
should be a positive constant.

For any realization of observations, we only multiply the likelihood by a constant and doesn’t change the
location of maximum. If I do a test on ratio of likelihood (LRT), it won’t change the ratio of likelihood.

1.4.3 Densities w.r.t. Product Measures

Proposition 1.4.3. Let (Ωi,Fi, µi), i = 1, 2 be the σ-finite measure spaces with νi � µi. Then ν1 × ν2 �

µ1 × µ2 and
d(ν1 × ν2)

d(µ1 × µ2)
(ω1, ω2) = f(ω1, ω2) =

[
dν1

dµ1
(ω1)

] [
dν2

dµ2
(ω2)

]
, µ1 × µ2-a.e.

Proof. Let Ai ∈ Fi, then

(ν1 × ν2)(A1 ×A2) = ν1(A1)ν2(A2)

=

∫
A1

dν1

dµ1
(ω1)dµ1(ω1)

∫
A2

dν2

dµ2
(ω2)dµ2(ω2)

=

∫
A1

∫
A2

dν1

dµ1
(ω1)

dν2

dµ2
(ω2)dµ2(ω2)dµ1(ω1) (by Fubini’s theorem)

=

∫
Ω1

∫
Ω2

IA1
(ω1)IA2

(ω2)
dν1

dµ1
(ω1)

dν2

dµ2
(ω2)dµ2(ω2)dµ1(ω1)

=

∫
Ω1

∫
Ω2

IA1×A2
(ω1, ω2)

dν1

dµ1
(ω1)

dν2

dµ2
(ω2)dµ2(ω2)dµ1(ω1)

=

∫
Ω1×Ω2

IA1×A2(ω)
dν1

dµ1
(ω1)

dν2

dµ2
(ω2)d(µ1 × µ2)(ω1, ω2)

=

∫
A1×A2

dν1

dµ1
(ω1)

dν2

dµ2
(ω2)d(µ1 × µ2)(ω1, ω2) (by Fubini’s theorem)

By the uniqueness part of the Product Measure Theorem (Theorem 1.3.1), it follows that the measure

ν(C) =

∫
C

dν1

dµ1
(ω1)

dν2

dµ2
(ω2)d(µ1 × µ2)(ω1, ω2)

defined on (Ω1,F1, µ1)× (Ω2,F2, µ2) is in fact ν1 × ν2. Now ν � µ1 × µ2 and by the uniqueness part of the

Radon-Nikodym theorem,
d(ν1 × ν2)

d(µ1 × µ2)
(ω1, ω2) = f(ω1, ω2) =

[
dν1

dµ1
(ω1)

] [
dν2

dµ2
(ω2)

]
, µ1 × µ2-a.e.
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Remark. The last result implies that if X1 and X2 are independent continuous random variables with
Lebesgue densities f1 and f2, then the joint distribution of (X1, X2) is also continuous (i.e. Law[(X1, X2)]�
m2) and the joint density f w.r.t. m2 is the product of the marginal densities, i.e. f(x1, x2) = f1(x1)f2(x2).
Of course, this remark (and the preceding Proposition) can be extended to more than two random variables
and two measures by induction. The converse of this remark is also true (Exercise 1.4.11, homework).

Example 1.4.6. If X,Y are independent random variables,then PXY = PX × PY . PX � µ1 and PY � µ2

then PXY � µ1 × µ2 and fXY = fXfY

Under independence, we can construct the joint density w.r.t. the product of the dominating measures from
the marginal densities by simple multiplication. In general, there is no such nice relationship between the
joint and the marginal densities, but we can always recover the marginal densities from the joint density.

Proposition 1.4.4. Marginalization / Marginal density: Let (Ωi,Fi, µi), i = 1, 2 be the σ-finite
measure spaces with ν � µ1 × µ2. Let π1 : Ω1 × Ω2 → Ω1 be the coordinate projection (mapping) given by
π1(ω1, ω2) = ω1 and similarly for π2. Then ν ◦ π−1

i � µi and

d(ν ◦ π−1
1 )

dµ1
(ω1) =

∫
Ω2

dν

d(µ1 × µ2)
(ω1, ω2)dµ2(ω2)

Proof. When I have a measure on a space, the space is the domain of the measurable function. To another
space, function creates a new measure in its range space (induced measure). Note that ν ◦ π−1

1 is a measure

on (Ω1,F1). Our goal in this proof is to show that ν1 � µ1, and then that
dν1

dµ1
= f1, µ1-a.e. If µ1(A) = 0,

then the integral above is 0, so ν1(A) = 0 and we have that ν1 � µ1. Furthermore, since A ∈ F1 was
arbitrary, we can calculate the ν1 measure of a set by integrating w.r.t. dµ1 the function f1 over the set.

Hence, by the uniqueness part of the Radon–Nikodym theorem,
dν1

dµ1
= f1, µ1-a.e.

Now if A ∈ F1, then π−1
1 (A) = A× Ω2 is a rectangle set. Thus,

ν ◦ π−1
1 (A) = ν(π−1

1 (A)) = ν(A× Ω2)

=

∫
A×Ω2

dν

d(µ1 × µ2)
(ω1, ω2)d(µ1 × µ2)(ω1, ω2)

=

∫
A

[∫
Ω2

dν

d(µ1 × µ2)
(ω1, ω2)dµ2(ω2)

]
dµ1(ω1) (by Fubini’s theorem)

Example 1.4.7. X,Y are random variables, PXY � (µ1×µ2), dPXY = fXY d(µ1×µ2). Then the marginal
density for X is fX(x) =

∫
fXY dµ2(y)

Example 1.4.8. Suppose µ1 = m and µ2 = # on {1, · · · , k} in a discrete set Ω = {a1, a2, · · · }. fXY (x, y) =

π(y)
1√

2πσ2(y)
exp

[
− (x− µ(y))2

2σ2(y)

]
, fXY (x, j) = πj

1√
2πσ2

j

exp

[
− (x− µj)2

2σ2
j

]
= πjφ(x|µj , σ2

j ) & πj ≥

0,
k∑
j=1

πj = 1.

Find the marginal for X:
∫
fXY (x, y)dµ2(y) =

k∑
j=1

fXY (x, j) =
k∑
j=1

πjφ(x|µj , σ2
j ), a mixture normal density.
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Verify fXY is a probability density w.r.t. m × µ2.
∫
fXY d(µ1 × µ2) =

∫∞
−∞

k∑
j=1

πjφ(x|µj , σ2
j )dm(x) =

∑
j

πj
∫
φdm =

k∑
j=1

πj = 1

Example 1.4.9. Continuing Example 1.4.2 Y1, · · · , Yn are i.i.d. with Exp(λ), λ > 0. Observa-

tions Xi = min{Yi, Ci}. The joint density of X1, · · · , Xn w.r.t. µ =
n∏
i=1

(m × δCi) if fµ(x1, · · · , xn) =

n∏
i=1

[
1

λ
exp

(
−xi
λ

)]1−δi [
exp

(
−Ci
λ

)]δi
=

n∏
i=1

gλ(xi)
1−δiḠλ(Ci)

δi , where gλ ∼ Exp(λ) is Y densities, Ḡλ(y) =

1−Gλ(y) = P[Y > y], and

δi =

{
1, if Yi ≥ C
0, else

1.4.4 Support of a Measure

Before introducing the next important concept from measure theory, we briefly review the topology of
Euclidean spaces. This is discussed at much greater length in Rudin’s book, Principles of Mathematical
Analysis. Let x ∈ Rn, then a neighborhood of x is any ball (or sphere) of positive radius ε centered at x.
A ball of positive radius ε centered at x is a set of the form

B(x, ε) = {y ∈ Rn : ‖x− y‖ < ε}.

Here ‖·‖ denotes the Euclidean distance (norm) on Rn given by ‖x‖ = ‖(x1, · · · , xn)‖ =
√
x2

1, · · · , x2
n

A set A ⊂ Rn is called open iff for every x ∈ A, there is some ε > 0 s.t. B(x, ε) ⊂ A. A set C ⊂ Rn is called
closed iff it is the complement of an open set. One can show that a union of open sets is also open, and hence
that an intersection of closed sets is also closed. Also, the sets Rn and ∅ are both open and closed. Thus,
any set D ⊂ Rn is contained in some closed set (namely Rn), and the intersection of all closed sets which
contain D is also a closed set, namely the smallest closed set containing D. This set is called the closure of
D and denoted D̄. D̄ is also given by the following

D̄ = {lim
n
xn : x1, · · · , xn · · · is a sequence of points in D for which the lim

n
exists}

Otherwise said, D̄ is the set of limit points of D. Now we briefly explore a concept related to absolutely
continuity.

Definition 1.4.2. Suppose ν is a measure on (Rn,Bn). The support of ν is the set

supp(ν) = {x ∈ Rn : ν(B(x, ε)) > 0 for all ε > 0}

One can show that supp(ν) is a closed set, and if ν is a probability measure, then supp(ν) is the smallest
closed set with probability 1.

Proposition 1.4.5. Suppose µ and ν are Borel measures on Rn, µ is σ-finite, and ν � µ. Then supp(ν) ⊂ S̄

where S = {x ∈ supp(µ) :
dν

dµ
(x) > 0}
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Proof. Let x ∈ supp(ν), then for any ε > 0 we have ν(B(x, ε)) =
∫
B(x,ε)

dν

dµ
dµ > 0. In particular, the

nonnegative function IB(x,ε)(y) ·
(
dν

dµ

)
(y) cannot be identically 0 on B(x, ε), i.e.

(
dν

dµ

)
(y) > 0 for some

y ∈ B(x, ε).

Now let An be the sequence of balls B

(
x,

1

n

)
and yn ∈ An s.t.

(
dν

dµ

)
(yn) > 0. One checks that yn → x,

i.e. x is a limit point of S, so x ∈ S̄, as asserted.

Remark. ν � µ σ-finite implies supp(ν) ⊂ supp(µ). The converse is false, i.e. supp(ν) ⊂ supp(µ) does not
imply ν � µ. Also, we cannot in general claim supp(ν) = S̄ in Proposition 1.4.5. One does however have
the next result.

Proposition 1.4.6. Let U ⊂ Rn be open. Suppose

1. µ is LEbesgue measure restricted to U , i.e. µ(B) = m(B ∩ U) for all B ∈ Bn

2. ν � µ

3. the version of f =
dν

dµ
is continuous on U

Then supp(ν) = S̄ where S = {x ∈ U : f(x) > 0}

Proof. Now f is continuous on U and f(x) > 0 for some x ∈ U implies there is a ε > 0 s.t. f(y) > ε for all
y in some neighborhood B(x, δ0) of x. Hence, for x ∈ S, we have for all δ > 0 that

ν(B(x, δ)) ≥ εmn(B(x,min{δ, δ0})).

Since the r.h.s. above is positive, it follows that S ⊂ supp(ν). On the other hand, if x ∈ supp(ν), then for
all δ > 0,

0 <

∫
B(x,δ)

f(y)dm(y)

so in particular, for all δ there is a y ∈ B(x, δ) with f(y) > 0 and we can find a sequence yn ∈ S with
yn → x. Thus, x ∈ S̄, and we have shown that supp(ν) ⊂ S̄. Since S̄ is the smallest closed set containing S
and supp(ν) is a closed set containing S by the first part of the proof, it follows that supp(ν) = S̄

Example 1.4.10. Consider the exponential distribution with Lebesgue density

f(x) =

{
exp(−x), if x ≥ 0

0, otherwise

We cannot apply the previous proposition to this version of the density, but we can apply it to

f(x) =

{
exp(−x), if x > 0

0, otherwise

which is another version (that agrees with the first version except on the set {0}, which has Lebesgue measure
0). In this second version, the density is positive on the open set (0,∞), and so the support is the closed set
[0,∞).
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1.5 Conditional Expectation

Kolmogorov, 1930 wrote a book for conditional probability for mathematician, we need it for Borel paradox
handouts.

First start with machine learning problem. Suppose Y : (Ω,F ,P) → (R,B) (tumor) is a random variable
and X : (Ω,F ,P) → (Λ,G) (image) is any random element. We want to predict Y using X. Knowing
the value of Y tells us something about the particular outcome ω which occurred, and hence possibly also
something about the value of X, i.e. X(ω). It is often of interest to find the “best predictor” or “estimator”
of X based on the observed value of Y . By “based on the observed value of Y ”, we mean this predictor
is a function of Ŷ = h(X), . For mathematical convenience, we take “best” to mean “minimizes the mean
squared prediction error (MSPE),” which is defined to be

Criterion function: MSPE(h(X)) = E[(Y − h(X))2]

, we use calculations of variations methods to find necessary conditions for h∗(X), where h∗ is the optimal
predictor to minimize MSPE. How do we take derivatives w.r.t. h(X) and set to 0? Suppose we have

m(t; g(x)) = MSPE[(h∗(X) + tg(X))]

= E[(Y − h∗(X)− tg(X))2] = E[(Y − h∗(X))2]− 2tE[g(X)(Y − h∗(X))] + t2E[g(X)2]

Set
dm

dt
= 0, m(t) has its minimum at t =

E[g(X)(Y − h∗(X))]

E[g(X)2]
= 0 since h∗(X) is optimal. Now g function is

arbitrary of X =⇒ E[g(X)(Y −h∗(X))] = 0, ∀g(X) normal equations. ∀g(X), E[g(X)h∗(X)] = E[g(X)Y ]
is a necessary condition for h∗(X) to be optimal. Note that if X,Y both discrete, there are finite equations.
It suffices to hold for all indicators, i.e. ∀A ⊆ Range X is measurable, since indicators trivially have finite
second moments and also for simple functions by MCT (simple function approximation, etc.). If h∗(X)
minimizes MSPE(h(X)), then ∀A ⊆ Range(X), E[IA(X)h∗(X)] = E[IA(X)Y ]. This follows by taking a
sequence of simple functions on R converging to h. Note that IA(X)− IX−1(A)(ω) and Y −1(A) is a generic
element of σ(X). Now E[IA(X)h∗(X)] = E[IA(X)Y ] =⇒ E[ICh

∗(X)] = E[ICY ],∀C ∈ σ(X) provides us
with a possibly useful characterization of the “best” predictor of Y which is a function of X, we call this h∗(X)
the conditional expectation E[Y |X] defined by measurability and satisfying E[IA(X)h∗(X)] = E[IA(X)Y ].

Example 1.5.1. Elementary conditional probability: P(A|B) =
P(A ∩B)

P(B)
, A,B ⊆ Ω. Define P[A|X] =

E[IA|X], what is P[A|IB ]? Derive by joint distribution of (IA, IB) two indicator (bernoulli variable). Note
that we use measure and event notation here. PIAIB = P(A ∩B)δ(1,1) + P(A ∩Bc)δ(1,0) + P(Ac ∩B)δ(0,1) +
P(Ac ∩Bc)δ(0,0)

Joint density w.r.t. (µ1 × µ2), µ1 = µ2 = counting measure on {0, 1} = δ0 + δ1

fIAIB (x, y) =


P(A ∩B), (x, y) = (1, 1)

P(A ∩Bc), (x, y) = (1, 0)

P(Ac ∩B), (x, y) = (0, 1)

P(Ac ∩Bc), (x, y) = (0, 0)

Marginal density for indicator IB

fIB (x) =

{
P(B), x = 1

P(Bc), x = 0
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fIA|IB (y|x) =
fIAIB (x, y)

fIB (x)
=


P(A|B), if x = 1&y = 1

P(Ac|B), if x = 1&y = 0

P(A|Bc), if x = 0&y = 1

P(Ac|Bc), if x = 0&y = 0

Thus, E[IA|IB ] =
∫
yfIA|IB (y|IB)dµ2(y) = 0 · fIA|IB (0|IB) + 1 · fIA|IB (1|IB) = P (A|B)IB + P (A|Bc)IBc

Example 1.5.2. mixture model: joint density w.r.t. m × µ, µ is a counting measure. fXY (x, y) =
k∑
i=1

πiφ(x|µi, σ2
i )I{i}(y) = πyφ(x|µy, σ2

y). fX(x) =
k∑
i=1

πiφ(x|µi, σ2
i ). fY |X(j|x) =

πjφ(x|µj , σ2
j )

fX(x)
= P[Y =

j|X = x]. We have data and given a new observation X = x, P [Y = j|X = x] to predict the classes of this
new observation. It is useful for prediction, and similar to the clustering and unsupervised learning (because
we don’t know what y is.)

Remark. (Other conditional expectation notation:) E[Y |X] is a random variable h(x) satisfying ∀A ⊆
Range(X), E[IA(x)h(x)] = E[IA(X)Y ]. h : Range(X) → R, h(x) = E[Y |X = x] as a function of x. Note
E[Y |X] = E[Y |X = x] why? see 1.5.1

Conditional distribution: In the previous framework, fY |X(y|x) =
fXY (x, y)

fX(x)
. Define a family of probability

measures on Range(Y ): PY |X(A|x) = E[IA(Y )|X = x]. If we fix x, PY |X(·|x) is a probability measure on
Range(Y ). Further, E[g(X,Y )|X = x] =

∫
g(x, y)fY |X(y|x)dµ2(y) =

∫
g(x, y)dPY |X(y|x).

1.5.1 Characterization of Measurable Transformations of a Random Element

Recall that we wanted E[Y |X] to be a function of X satisfying other conditions (namely (E[ICh
∗(X)] =

E[ICY ],∀C ∈ σ(X)). The next result is a very useful characterization of the class of r.v.’s which are functions
of X.

Theorem 1.5.1. Suppose X : (Ω,F)→ (Λ,G) is a random variable and Z : (Ω,F)→ (Rn,Bn). Then Z is
σ(X)-measurable iff there is a Borel finction h : (Λ,G)→ (Rn,Bn) such that Z = h(X)

Remark. To say “Z is σ(X)-measurable ” means Z : (Ω,F) → (Rn,Bn), i.e. σ(Z) = Z−1(Bn) ⊂ σ(X).
Note that σ(X) is a sub–σ–field of F . The theorem may be summarized pictorially as follows:

(Λ,G) (Rn,Bn)

(Ω,F)
X Z

h exists iff σ(Z) ⊂ σ(X)

Proof. Assume that σ(Z) ⊂ σ(X) and we will show the existence of such an h. Also, assume for now n = 1.
We proceed in steps, as usual.

1. If Z is a simple function
m∑
i=1

aiIAi , where the sets Ai are disjoint and coefficient ai are distinct and

nonzero, i.e. ai 6= aj , if i 6= j. Then Ai = Z−1({ai}) ∈ σ(Z) and hence also Ai ∈ σ(X), i ≤ i ≤ m,
i.e. Ai = X−1(Ci) for some Ci ∈ G since all Ai ∈ σ(X) are of this form by definition of σ(X). Put

h =
m∑
i=1

aiICi . Then h(X(ω)) =
m∑
i=1

aiICi(X(ω)) =
m∑
i=1

aiIX−1(Ci)(ω) =
m∑
i=1

aiIAi(ω). This completes

the proof if Z is a simple function.
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2. If Z is not simple, then there exist simple functions Zn such that Zn(ω) → Z(ω), ∀ω ∈ Ω by simple
function approximation. By step 1, each Zn = gn(Y ) for some gn : (Λ,G) → (Rn,Bn). Now put
L = {λ ∈ Λ : lim

n
gn(λ) exists }. Let hn = gnIL. Clearly there is a function h = lim

n
hn (since if λ ∈ L

then hn(λ) = gn(λ)) and the sequence of real numbers gn(λ) has a limit by definition of L, and if λ /∈ L
then gn(λ) = 0, which has the limit 0 as n→∞), and h is measurable by Proposition 1.2.1 (c).

We will show Z(ω) = h(X(ω)) ∀ω ∈ Ω. Note that X(ω) ∈ L because g(X(ω)) = Zn(ω) → Z(ω).
By definition of hn, hn(X(ω)) = gn(X(ω)) → Z(ω), but hn(X(ω)) → h(X(ω)) by definition of h, so
Z(ω) = h(X(ω)). This finishes Step 2.

3. Finally, to remove the restriction n = 1, use the result for n = 1 on each component of Z = (Z1, · · · , Zn)
and apply Theorem 1.3.5 to conclude that Z is σ(Y ) measurable when each component is σ(X) mea-
surable. To prove the converse, assuming Z = h(X) = h ◦ X for some h : (Λ,G) → (Rn,Bn), we
have Z−1(B) = (h ◦ X)−1(B) = X−1(h−1(B)). If B ∈ Bn, then h−1(B) ∈ G, so it follows that
X−1(h−1(B)) ∈ σ(X). This shows σ(Z) ⊂ σ(X).

The function h in E[Y |X] = h◦X is a Borel function on (Λ,G). Let x ∈ Λ, E[Y |X = x] = h(x) is a function
on Λ, whereas E[Y |X] = h ◦X is a function on Ω.

1.5.2 Formal Definition of Conditional Expectation

We have shown that E[ICh
∗(X)] = E[ICY ],∀C ∈ σ(X) is necessary for h∗ to be the “optimal” predictor of

Y based on X . One can show that it is also sufficient. Realizing that E[ICh
∗(X)] = E[ICY ],∀C ∈ σ(X)

characterizes the “optimal” such predictor when Y has finite second moment allows us to generalize this
notion of “optimal” predictor when X has only first moment. Also, notice that it only depends on the
σ-field σ(Y ), so we can generalize the definition of conditional expectation to the situation where the given
“information” is in the form of a σ-field (which may not often be the case in practical applications).

Definition 1.5.1. Let Y be an integrable r.v. on (Ω,F ,P)→ (R,B).

1. Suppose G be a sub-σ-field of F . The conditional expectation of Y given G denoted by E[Y |G] is the
a.s.-unique r.v. satisfying:

(a) E[Y |G] is G-measurable from (Ω,G)→ (R,B)

(b)
∫
A
E[Y |G]dP =

∫
A
Y dP for any A ∈ G

2. Let B ∈ F . The conditional probability of B given G is defined to be P[B|G] = E[IB |G]

3. Let X be measurable random element on (Ω,F), then E[Y |X] = E[Y |σ(X)]

Remark. 1. Note that E[Y |G] is a r.v., i.e. a mapping from (Ω,F) → (R,B). Thus, E[Y |G](ω) ∈ R for
each ω ∈ Ω.

2. Since E[|Y |] <∞, we also have E[|IAY |] <∞ for all A ∈ G. So the r.h.s. of 1-(b) is defined and is a
finite real number.

3. From a probabilistic point of view, one can say that σ(X) “contains the information in X” useful for
prediction of any r.v. Y . Note that from the observed value X(ω) one can only determine whether or
not ω ∈ A if A ∈ σ(X)
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Theorem 1.5.2. (Existence and uniqueness of conditional expectation) Suppose Y is real valued and
E[|Y |] <∞, then h(X) = E[Y |X] iff h is Borel and ∀A ⊂ Range(X) and A is measurable, normal equation
E[IA(X)h(X)] = E[IA(X)Y ]. There exists an essentially unique h(X) satisfying the previous condition.
(that is, satisfying Definition 1.5.1)

Before we prove the Theorem 1.5.2, we need the following definition for conditional distribution (and it will
be used again later.) This definition requires too much details here and not so easily to be violated and find
out a counterexample.

Definition 1.5.2. Let Y : (Ω,F ,P)→ (Λ1,G1) and X : (Ω,F ,P)→ (Λ2,G2) be random elements. A family
of conditional distribution for Y given X = x is a function PY |X : G1 × Λ→ [0, 1] satisfying

1. For all x ∈ Λ2, the range of X, PY |X(·|x) is a probability measure on (Λ1,G1)

2. For all A ⊂ G1, the range of Y , PY |X(A|x) is a is a version of P [Y ∈ A|X = ·] = E[IA(Y )|X = x]

When such a PY |X(A|x) exists, we shall write it as PY |X(A|X = x).

Proof. Proof of Theorem 1.5.2: The goals are to show that ∃h : Range(X) → R s.t. ∀ measurable
λ ⊆ Range(X), E[IA(X)h(X)] = E[IA(X)Y ]. First assume Y ≥ 0, define a measure ν on (Ω,F) by

ν(A) =
∫
A
Y dP = E[IAY ]. Then ν is a measure on Ω with density Y w.r.t. P. That is, ν � P and

dν

dP
= Y

almost surely. Here note that we will get a function from range of X to the real number, Y is from underlying
probability space to real number.

(Λ,G) (R,B)

(Ω,F)
X E[Y |X]

E[Y |X = ·]

First, suppose A ⊆ Range(X), we have PX(A) = 0 = P[X−1(A)]. ν ◦ X−1(A) =
∫
X−1(A)

Y dP =∫
IA(X)Y dP = 0. Thus, ν ◦X−1(A) = 0. We can check the claim that the induced measure is dominated by

the distribution of X ((ν◦X−1)� PX). Therefore the R-N derivative exists that ∃h s.t. hd(ν◦X−1) = hdPX .
Now E[IA(X)h(X)] =

∫
IA(x)h(x)dPX(x) =

∫
IA(x)h(x)d(ν ◦ X−1)(x) =

∫
IX−1(A)dν =

∫
IX−1(A)Y dP =∫

IA(X)Y dP = E[IA(X)Y ]. So h(X) = E[Y |X].

For general Y , we apply another version below. Let ν0 and P0 denote the restrictions of ν and P to G, i.e.
ν0 is the measure on (Ω,G) given by ν0(A) = ν(A) for all A ∈ G. Then we still have ν0 � P0, but not

necessarily that
dν0

dP0
= Y since Y is not necessarily G-measurable, i.e. we may not have σ(Y ) ⊂ G. However,

by the Radon-Nikodym theorem (note that P0 is trivially σ–finite) we have that there is a r.v. h∗(X) =
dν0

dP0
,

dP0-a.s. such that h∗(X) is G-measurable (i.e. property (i) of the definition holds) and

ν0(A) =

∫
A

h∗(X)dP0,∀A ∈ G

Since ν0(A) = ν(A) =
∫
A
h∗(X)dP, we have∫

A

Y dP =

∫
A

h∗(X)dP0,∀A ∈ G (1.3)
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Now we claim that for any r.v. W on (Ω,G,P0),
∫
WdP0 =

∫
WdP. (Note that W is automatically a r.v. on

(Ω,F ,P).) This is certainly true if W is an indicator by definition of P0, and then it follows immediately for
simple functions by linearity of integrals. For W ≥ 0, consider a sequence of G-measurable simple functions
0 ≤ φn ↑ W as in Proposition 1.2.6 and apply MCT. Finally, the general case (which we do not actually
need here) follows from linearity and the decomposition of W into its positive and negative parts.

Hence, from (1.3) we have ∫
A

Y dP =

∫
A

h∗(X)dP,∀A ∈ G

which is Definition 1.5.1-1(b).

If h′(X) is any other r.v. satisfying 1.5.1-1 (a) and (b), then h′(X) =
dν0

dP0
= h∗(X), P0-a.s. by the essential

uniqueness of Radon-Nikodym derivatives. Note that P0-a.s. implies P-a.s. since a P0-null set is just a P-null
set which happens to belong to G.

If we drop the restriction that Y ≥ 0 but require E[|Y |] <∞, then apply the previous argument to Y+ and
Y− to obtain essentially unique r.v.’s h∗+(X) and h∗−(X) which are G-measurable and satisfy

∫
A

Y+dP =

∫
A

h∗+(X)dP,
∫
A

Y−dP =

∫
A

h∗−(X)dP,∀A ∈ G

We claim h∗+(X) and h∗−(X) are both finite a.s. so that the r.v. h∗(X) = h∗+(X) and h∗−(X) is defined a.s.
(i.e. it can be of the form ∞−∞ only on a null set, and we may define it arbitrarily there). Now Y+ and
Y− are both finite a.s., and if say A = [h∗+(X) = ∞] satisfied P(A) > 0, then since A = Z−1({∞}) ∈ G,∫
A
Y+dP =

∫
A
h∗+(X)dP =∞. However, since X is integrable,

∫
A
Y+dP ≤

∫
A
h∗+(X)dP <∞, a contradiction.

This establishes the claim for h∗+(X) and the claim that h∗−(X) <∞ a.s. follows similarly.

Verification of properties (a) and (b) is easy. If h′(X) is any other r.v. satisfying (a) and (b), then let
D = h∗(X)− h(X) . Then D is G–measurable, so A = [D ≥ 0] is in G. Since both h∗(X) and h′(X) satisfy
(b)

∫
Ω

IADdP =

∫
A

h∗(X)dP−
∫
A

h′(X)dP =

∫
A

Y dP−
∫
A

Y dP = 0

However, IAD is a nonnegative function, so by Proposition 1.2.4-5, IAD = 0 a.s. A similar argument shows
IAcD = 0, a.s., and hence h∗(X) = h′(X), a.s., which completes the proof.

Remark. “Essentially unique” can always change h(X) = E[Y |X] on sets of probability P 0, and can change
h(x) = E[Y |X = x] on a set of PX measure 0. Similarly, conditional probability PY |X(·|x) can be changed
on a set of x values having PX measure 0.

LetX : (Ω,F ,P)→ (Λ,G) be any random elements, and letX be an integrable r.v. E[Y |X](ω), ω ∈ Ω is a r.v.
on Ω which is σ(X)-measurable by definition. Hence, by Theorem 1.5.1, there is a function h : (Λ,G)→ (R,B)
such that h(X(ω)) = (h◦X)(ω). Furthermore, this function is Law[X]-essentially unique in the sense that for
some other h′ : (Λ,G)→ (R,B) implies that h′ = h Law[X]-a.s., i.e. P [h(X)−h′(X)] = 1. Any such version
is defined to be the conditional expectation of Y given X = x, and denoted E[Y |X = x] = h(x), x ∈ Λ. The
following picture may help the student keep matters clear:



1-36 Lecture 1: Measure Space

(Λ,G) (R,B)

(Ω,F)
X E[Y |X]

E[Y |X = ·]

The notations here are very confusing for many students, so we will try to explain some of the subtleties.
One difficulty is that E[Y |X = x] is a function of x ∈ Λ in our setup, and the argument of the function x
does not appear in a convenient place. Indeed, in the defining equation above E[Y |X = x] = h(x) where
h is the function such that E[Y |X = x] = h(x), if we substitute the random object X for x we obtain the
seemingly nonsensical “E[Y |X = X] = E[Y |X]” The following may be a little clearer:

E[Y |X](ω) = E[Y |X = X(ω)] (1.4)

The argument of the function E[Y |X = ·] is whatever appears on the r.h.s. of the equals sign “=” after
the conditioning bar “|”. We do not call E[Y |X = ·] a random variable in general since it is not a function
defined on the underlying probability space (Ω,F ,P), although it is a function on the probability space
(Λ,G, Law[X]), so technically we could call it a random variable.

1.5.3 Examples of Conditional Expectations.

The definition of E[XY |G] is very unsatisfactory from an intuitive point of view, although it turns out to be
very convenient from a formal mathematical point of view. In order to make it more appealing intuitively, we
shall verify that it gives the “right answer” in a number of circumstances with which the student is already
familiar.

Example 1.5.3. Suppose A1, · · · , An are events which partition Ω (i.e. the Ai are mutually exclusive and

Ω =
n⋃
i=1

Ai). Suppose P (Ai) > 0 for each i and a1, a2, · · · an are distinct real numbers. Let X =
n∑
i=1

aiIAi

be a simple r.v. If Y is an integrable r.v., then

E[Y |X] =

n∑
i=1

∫
Ai
Y dP

P (Ai)
IAi , a.s.

Consider the elementary case n = 2 and Y = IB for some event B. Write A = A1 and Ac = A2. The values
of a1 and a2 are irrelevant, as long as they are distinct, since any such X contains the same “information”,
namely the σ-field σ(X) = {∅, A,Ac,Ω}. We may take X = IA for simplicity. Then, according to the
previous equation,

E[Y |X] = P [B|X] =

∫
A
IBdP

P (A)
IA +

∫
Ac
IBdP

P (Ac)
IAc , a.s.

That is, almost surely

P [B|X](ω) =


P (A ∩B)

P (A)
, if ω ∈ A

P (Ac ∩B)

P (Ac)
, if ω ∈ Ac

Note that for ω ∈ A, P [B|IA](ω) = P [B|A] =
P (A ∩B)

P (A)
, with probability 1, where P [B|A] denotes the

“classical” or “elementary” conditional probability of B given A. Similarly, for ω ∈ Ac, P [B|IA](ω) =
P [B|Ac] a.s. Thus, we have P [B|IA] = P [B|A]IA + P [B|Ac]IAc . Note that we have mixed meanings for
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conditional probability in the last display. The l.h.s. is the “sophisticated” type of conditional probability
defined in Definition 1.5.1, whereas both conditional probabilities on the r.h.s. are of the elementary variety.
It will always be clear when we intend elementary conditional probability (which is a fixed number) rather
than our more sophisticated kind (which is a random variable) since the second member of the conditional
probability operator will be a set in the case of elementary conditional probability but will be a random
variable or a σ-field for the more sophisticated variety.

We may also express in terms of the “other” kind of conditional expectation. The reader should be able to

check that E[Y |X = x] =
n∑
i=1

∫
Ai
Y dP

P (Ai)
I{ai}(x), Law[X]-a.s.

Proof. Let Z denote the proposed E[Y |X]. Since Ai = X−1({ai}), it follows that Z is σ(X)-measurable.
In fact, one can show that σ(X) is the collection of all unions of the Ai. For instance, if B ∈ B, then
X−1(B) =

⋃
{i:ai∈B}

Ai. Hence, if A ∈ σ(X), say A = X−1(B) for B ∈ B, then

∫
A

Y dP =

∫
X−1(B)

Y dP =
∑

{i:ai∈B}

∫
Ai

Y dP

Now, ∫
A

ZdP =
∑

{i:ai∈B}

∫
Ai

n∑
j=1

∫
Aj
Y (ωi)dP(ω1)

P (Aj)
IAj (ω)dP(ω)

=
∑

{i:ai∈B}

n∑
j=1

∫
Aj
Y (ωi)dP(ω1)

P (Aj)

∫
Ai

IAj (ω)dP(ω)

Note in the last expression that when i is fixes in the outer summation, then
∫
Ai
IAjdP is nonzero only when

j = 1 since otherwise Ai and Aj are disjoint. If i = j then this integral is P (Ai). Hence,∫
A

ZdP =
∑
i:ai∈B

∫
Ai
Y dP

P (Ai)

∫
Ai

IAi(ω)dP(ω) =
∑
i:ai∈B

∫
Ai

Y dP

These shows the Definition 1.5.1-1 (a) and (b). One virtue of the abstract definition of conditional expectation
is that it allows us to make sense of P [B|Y ] even when P [Y = y] = 0 for any single value y. The next result
makes this clearer.

Proposition 1.5.3. Suppose X : (Ω,F ,P) → (Λ1,G1) and Y : (Ω,F ,P) → (Λ2,G2) be random elements
and µi is a σ-finite measure on (Λi,Gi) for i = 1, 2 s.t. Law[X,Y ] � µ1 × µ2. Let f(x, y) denote the
corresponding joint density. Let g(x, y) be any Borel function Λ1 × Λ2 → R s.t, E[g(X,Y )] <∞. Then

E[g(X,Y )|X] =

∫
Λ1
g(X, y)f(X, y)dµ2(y)∫
Λ1
f(X, y)dµ2(y)

, a.s.

Remark. Note that the denominator is fX(X), which is the marginal density of X w.r.t. µ1. PXY � µ1×µ2,
µ1 on Range(X), µ2 on Range(Y ), fXY (x, y)d(µ1 × µ2)(x, y) = dPXY (x, y) is the joint (Lebesgue) density.
Define the conditional density of Y given X by

fY |X(y|x) =


fXY (x, y)

fX(x)
, if fX(x) > 0

0, otherwise
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where fX(x) =
∫
fXY (x, y)dµ2(y).

Note that for fixed x this is a density w.r.t. µ2 for a probability measure on Λ1, where X is a random element
taking values in Λ2. Proposition 1.5.3 may be rewritten as

E[g(X,Y )|X] =

∫
g(X, y)fY |X(y|X)dµ2(y)

E[g(X,Y )|X = x] =

∫
g(x, y)fY |X(y|x)dµ2(y)

Proof. It follows from Fubini’s theorem that both of the functions
∫

Λ2
g(x, y)f(x, y)dµ2(y) and

∫
Λ2
f(x, y)dµ2(y)

are measurable functions of x, and the second is positive Law[X]-a.s. (the set of x values where it is 0 has
Law[X] measure 0). If we define h(x) to be the quotient of the first over the second (i.e. h(X) is the function
of X on the r.h.s. of Proposition 1.5.3), then h(x) is defined Law[Y ]-a.s. and is measurable from Λ1 → R.
As the r.h.s. of Proposition 1.5.3 equals h(X) = h ◦X) , it follows that the r.h.s. is σ(X)-measurable. This
is property 1 of Definition 1.5.1.

Next we check the second property of Definition 1.5.1. Let B ∈ Bn so X−1(B) is a generic element of σ(X).
Then ∫

X−1(B)

h(X)dP =

∫
B

h(x)dPX(x) =

∫
B

h(x)fX(x)dµ1(x)

=

∫
B

∫
g(x, y)f(x, y)dµ2(y)

fX(x)
fX(x)dµ1(x) =

∫
B

∫
g(x, y)f(x, y)dµ2(y)dµ1(x)

=

∫
Λ2×B

g(x, y)f(x, y)d(µ1 × µ2)(x, y) =

∫
X−1(B)

g(X,Y )dP

We need that the normal equation holds. Take A ⊆ Range(X),

E[IA(x)h(x)] =

∫
IA(x)h(x)fX(x)dµ1(x)

=

∫ [∫
g(x, y)fY |X(y|x)dµ2(y)

]
fX(x)IA(x)dµ1(x)

=

∫ ∫
IA(x)g(x, y)fY |X(y|x)fX(x)dµ1(x)dµ2(y) (by Fubini)

where fY |X(y|x)fX(x) = fXY (x, y) is joint density , µ1 × µ2-a.e. Since N = {(x, y) : fX(x) = 0} satis-
fies PXY (N) = 0,

∫
INfXY d(µ1 × µ2) =

∫
INfXdµ1 = 0. If we are looking the set {(x, y) : fXY (x, y) >

0&fX(x) = 0} is a subset ofN , PXY ({(x, y) : fXY (x, y) > 0&fX(x) = 0}) = 0.
∫ ∫

IA(x)g(x, y)fY |X(y|x)fX(x)dµ1(x)dµ2(y) =
E[IA(x)g(X,Y )] similar to integrate h(X) previously defined. Thus, normal equation for h(x) as given.

1.5.4 Conditional Distributions

We now consider conditional distributions in general cases where we may not have any p.d.f. Let X and Y be
two random vectors defined on a common probability space. It is reasonable to consider P [Y −1(B)|X = x]
as a candidate for the conditional distribution of Y , given X = x, where B is any Borel set. However, since
conditional probability is defined almost surely, for any fixed x,P [Y −1(B)|X = x] may not be a probability
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measure. The first part of the following theorem (whose proof can be found in Billingsley (1986, pp. 460-
461)) shows that there exists a version of conditional probability such that P [Y −1(B)|X = x] is a probability
measure for any fixed x.

We need to recall this definition to proof the following

Definition 1.5.3. Let X : (Ω,F ,P)→ (Λ1,G1) and Y : (Ω,F ,P)→ (Λ2,G2) be random elements. A family
of conditional distribution for X given Y = y is a function PY |X : G1 × Λ→ [0, 1] satisfying

1. For all x ∈ Λ2, the range of X, PY |X(·|x) is a probability measure on (Λ1,G1)

2. For all A ⊂ G1, the range of Y , PY |X(A|x) is a is a version of P [Y ∈ A|X = ·] = E[IA(Y )|X = x]

When such a PY |X(A|x) exists, we shall write it as PY |X(A|X = x).

Proposition 1.5.4. Suppose that the assumptions of Proposition 1.5.3 hold. Then we have

1. the family of regular conditional distributions Law[Y |X = x] exists

2. Law[Y |X = x]� µ2 for Law[X]–almost all values of x

3. the Radon-Nikodym derivatives are given by

dLaw[Y |X = x]

dµ1
(x) = fY |X(y|x), µ1 × µ2 - a.e.,

where fY |X(y|x) is the conditional density given in Proposition 1.5.3.

Proof. For all B ∈ G1,

P [Y ∈ B|X = x] =

∫
IB(y)fY |X(y|x)dµ2(y)

This verifies (i) of Definition 1.5.2. Condition (ii) of the definition follows since fY |X(y|x) is a proba-
bility density w.r.t. dµ2(y) for each fixed x ∈ Λ1, i.e. fY |X(y|x) ≥ 0 for all x and y, and for all y,∫
fY |X(y|x)dµ2(y) = 1.

Remark. The reader may find the definition and previous result very puzzling. After all, is it not obvious
that conditional probability distributions exist? The answer is, “No,” but it is also not obvious why they
should not automatically exist. To explain, suppose (Ω,F ,P) is a probability space and G is a sub-σ-field
of F. Then for each event A ∈ F , the conditional probability P [A|G] = E[IA|G] is an almost surely uniquely
defined r.v. Fix ω ∈ Ω. Does it follow that P [A|G](ω) is a probability measure when considered as a function
of the event A? Given that P [A|G](·) may be modified arbitrarily on P -null sets (as long as it is done in a
G-measurable way), clearly we may not use any version of the family of r.v.’s {P [A|G](·) : A ∈ F} and obtain
a family of probability measures {P [·|G](ω) : ω ∈ Ω}. In general, such versions of P [A|G](·) may not exist.
Like a number of issues in measure theory, (e.g. the existence of subsets of R which are not Borel measurable)
the nonexistence of conditional probability distributions is a technical detail which is of little importance in
statistics. The next theorem shows that conditional distributions exist for the settings we shall encounter in
this book. For further discussion of the difficulties involved with obtaining a family of conditional probability
distributions (including counterexamples wherein they don’t exist), see Ash or Brieman. Exercise 33.13, p.
464 of Billingsley provides a specific example.

Theorem 1.5.5. 1. (Existence of conditional distribution): Let Y be a random n-vector on a probability
space (Ω,F ,P) and A be a sub-σ-field of F . Then there exists a function P (B,ω) on Bn×Ω such that
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(a) P (B,ω) = P [Y −1(B)|A] a.s. for any fixed B ∈ Bn
(b) P (·, ω) is a probability measure on (Rn,Bn) for any fixed ω ∈ Ω

Let Y be measurable from Ω,F ,P)→ (Λ,G). Then there exists a family PY |X(B|x) such that

(a) PY |X(B|x) = P [Y −1(B)|X = x] a.s. PX for any fixed B ∈ Bn
(b) PY |X(·|x) is a probability measure on (Rn,Bn) for any fixed y ∈ Λ

Furthermore, if E[g(X,Y )] <∞ with a Borel function g, then

E[g(X,Y )|X = x] = E[g(x, Y )|X = x] =

∫
Rn
g(x, y)dPY |X(y|x) a.s. PX

2. (Two stage experiment theorem): Let (Λ,G,P1) be a probability space. Suppose that P2 is a
function from Bn × Λ→ R and satisfies

(a) P2(x, ·) is a probability measure on (Rn,Bn) for any x ∈ Λ

(b) P2(·, A) is Borel for A ∈ Bn

There is a unique probability measure P on (Rn × Λ, σ(Bn × G)) s.t. for A ∈ Bn and B ∈ G,
P(A × B) =

∫
B
P2(x,A)dP1(x). Furthermore, if (Λ,G) = (Rm,Bm), and X(x, y) = x and Y (x, y) =

y define the coordinate random vectors, then PX = P1, PY |X(x|·) = P2(x, ·), and the probability
measure above is the joint distribution of (X,Y ), which has the following joint c.d.f. F (x, y) =∫

(−∞,x]
PY |X((−∞, y)|z)dPX(z), x ∈ Rn, y ∈ Rm

The proof of this theorem may be found in Breiman. It also follows from Theorems 33.3, p. 460, and
Theorem 34.5, p. 471 of Billingsley. Comparison of Proposition 1.5.5 and Theorem 1.5.6 demonstrates the
usual situation in statistics: in spite of the difficulty of proving a general result like Theorem 1.5.6, with a
few more “concrete” assumptions as in Proposition 1.5.5, one can “barehandedly” construct the conditional
distribution.

Remark. 1. Now we rewrite the previous Theorem 1.5.5-2 and outline the usual procedure for rigorously
“deriving” a conditional distribution. One typically has a “candidate” for the conditional distribution
PY |X , and it is necessary to verify that it satisfies the defining properties. The “candidate” comes
from previous experience with elementary conditional probabilities or conditional densities, or from
intuition. A candidate for PY |X must be a function of the form p(x,A) where A varies over measurable
sets in the range of Y and x varies over elements in the range of X . Then there are basically three
conditions that must be verified:

(a) ∀x ∈ Λ, p(x, ·) is a probability measure on (Λ1,G1)

(b) ∀A ∈ G1, p(·, A) is Borel measurable (Λ2,G2)→ (R,B) for each fixed B ∈ Bn
(c) ∀B ∈ G2 and ∀A ∈ G1, P [Y ∈ B&X ∈ A] =

∫
A
p(x,A)dLaw[X](x).

Now condition (a) here is simply a restatement of condition 2 in Definition 1.5.2, and conditions (b)
and (c) together amount to condition 1 in Definition 1.5.2. Note that (b) means that p(X,A) is a σ(X)
measurable r.v. as required in item 1 of the definition of Definition 1.5.1. We will show that (c) here
is simply a restatement of the integral condition in item 2 of Definition 1.5.1. Now according to that
condition in Definition 1.5.1, we should have

∀B ∈ G2,

∫
[Y ∈B]

p(X(ω), A)dP (ω) =

∫
[Y ∈B]

I[X∈A](ω)dP (ω)
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To explain, [X ∈ A], which is another way of denoting {ω ∈ Ω : X(ω) ∈ A} = X−1(A) is a generic
element of σ(X). Also, recall that P [C|G] = E[IC |G], so we use an indicator for Y in Definition 1.5.1.
Now ∫

[Y ∈B]

I[X∈A](ω)dP (ω) =

∫
I[Y ∈B]I[X∈A](ω)dP (ω) =

∫
I[Y ∈B]∩[X∈A](ω)dP (ω)

= P [Y ∈ B&X ∈ A]

Also, by the change of variables,∫
[X∈A]

p(X(ω), A)dP (ω) =

∫
A

p(x,A)dLaw[X](x)

This completes the verification that (3) here is the same as condition 2 in Definition 1.5.1.

Condition (a) here is usually easy to check. We generally regard condition (b) as automatic – any
function p(x,A) that you can “write down” (e.g. as a formula in x) is measurable. So, any difficulties
usually come in verification of condition (c).

2. Note that y is the only variable of integration in Theorem 1.5.5-1(b), and both sides are functions of
x. This should be clear because y occupies the site in the function where the measurable set would
go when evaluating its measure. The notation is not entirely desirable, and it is perhaps preferable to
write

E[h(X,Y )|X = x] = h(x, y)PY |X(dy|X = x)

This makes clearer the variable of integration, and it is more consistent perhaps that a “differential
set” dy should occupy the set argument than a regular variable. However, putting the d in front of the
measure is much more convenient for the mnemonics of Radon-Nikodym derivatives, which is why we
chose this convention. We shall use the convention as the above equation for clarity on occasion.

For a fixed x, PY |X=x = PY |X=x(x|·) is called the conditional distribution of Y given X = x. Under the
conditions in Theorem 1.5.5-1, if X is a random m-vector and (X,Y ) has a p.d.f. w.r.t. µ1 × µ2 (µ1 and µ2

are σ-finite measures on (Rn,Bn) and (Rm,Bm), respectively), then fY |X(y|x) is the p.d.f. of PY |X=x w.r.t.
µ1 for any fixed x.

The second part of Theorem 1.5.5-1 states that given a distribution on one space and a collection of condi-
tional distributions (which are conditioned on values of the first space) on another space, we can construct
a joint distribution in the product space. It is sometimes called the “two-stage experiment theorem” for the
following reason. If X ∈ Rn is selected in stage 1 of an experiment according to its marginal distribution
PX = P1, and Y is chosen afterward according to a distribution P1(x, ·), then the combined two-stage ex-
periment produces a jointly distributed pair (X,Y ) with distribution P (X,Y ) and P (Y |X = x) = P1(x, ·).
This provides a way of generating dependent random variables. The following is an example.

Example 1.5.4. A market survey is conducted to study whether a new product is preferred over the product
currently available in the market (old product). The survey is conducted by mail. Questionnaires are sent
along with the sample products (both new and old) to N customers randomly selected from a population,
where N is a positive integer. Each customer is asked to fill out the questionnaire and return it. Responses
from customers are either 1 (new is better than old) or 0 (otherwise). Some customers, however, do not return
the questionnaires. Let Y be the number of ones in the returned questionnaires. What is the distribution of
Y ?

If every customer returns the questionnaire, then (from elementary probability) Y has the binomial distri-
bution Bi(p,N) (assuming that the population is large enough so that customers respond independently),
where p ∈ (0, 1) is the overall rate of customers who prefer the new product. Now, let X be the number of
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customers who respond. Then X is random. Suppose that customers respond independently with the same
probability π ∈ (0, 1). Then PY is the binomial distribution Bi(π,N). Given X = x (an integer between 0
and N), PY |X=x is the binomial distribution Bi(p, x) if x ≥ 1 and the point mass at 0 if y = 0. Binomial
distributions have p.d.f.’s w.r.t. counting measure, we obtain that the joint c.d.f. of (X,Y ) is

F (x, y) =

x∑
k=0

PY |X=k((−∞, y])

(
N

k

)
πk(1− π)N−k

=

x∑
k=0

min(y,k)∑
j=0

(
k

j

)
pj(1− p)k−j

(
N

k

)
πk(1− π)N−k

for x = 0, 1, · · · , y, and y = 0, 1, · · · , N . The marginal c.d.f. FY (y) = F (∞, y) = F (N, y). The p.d.f. of Y
w.r.t. counting measure is

fY (y) =

x∑
k=y

(
k

y

)
py(1− p)k−y

(
N

k

)
πk(1− π)N−k

=

(
N

y

)
(πp)y(1− πp)N−x

N∑
k=y

(
N − y
k − y

)(
π − πp
1− πp

)k−y (
1− π
1− πp

)N−k
=

(
N

y

)
(πp)y(1− πp)N−x

is the binomial distribution of Bi(πp,N)

1.5.5 Results on Conditional Expectation

Theorem 1.5.6. Let X, Y , Y1, and Y2 be integrable r.v.’s on (Ω,F ,P), and let G be a fixed sub–σ–field of
F .

1. (Conditional expectation of constant r.v.): If Y = k a.s. k ∈ R, then E[Y |G] = k a.s.

Proof. follows 6.

2. (Monotonicity): If Y1 ≤ Y2 a.s., then E[Y1|G] ≤ E[Y2|G] a.s.

Proof. It suffices to show that Y ≥ 0 a.s. implies E[Y |G] ≥ 0 a.s. by taking Y = Y2 − Y1, this was
shown in the proof of Theorem 1.5.2. Suppose Y ≥ 0 a.s., and we will show that E[Y |X] ≥ 0 a.s.
Let A = {x : E[Y |X = x] < 0}. Then by the “normal equations” for E[Y |X], E[IA(X)E[Y |X]] =
E[IA(X)Y ] ≥ 0, where the last inequality follows since IA(X)Y ≥ 0 a.s. Since IA(X)E[Y |X] ≤ 0
by definition of A, it follows from Prop. 1.2.4(b) (f ≥ 0,

∫
fdm = 0 =⇒ f = 0, µ-a.e.) that

IA(X)E[Y |X] = 0 a.s. Since E[Y |X] < 0 when IA(X) > 0 by definition of A, it follows IA(X) = 0
a.s., which implies E[Y |X] ≥ 0 a.s. If Y1 ≤ Y2 a.s., then applying Y2 − Y1 and using linearity, we get
E[Y2 − Y1|X] ≥ 0 =⇒ E[Y1|X] ≤ E[Y2|X] a.s.

3. (Linearity): If a1, a2 ∈ R, then E[a1Y1 + a2Y2|G] = a1E[Y1|G] + a2E[Y2|G] a.s.

Proof. First show E[aY |G] = aE[Y |G] a.s. Clearly aE[Y |G] is G-measurable, and forA ∈ G,
∫
aE[Y |G]dP =

a
∫
E[Y |G]dP = a

∫
Y dP =

∫
A

(aY )dP Then, verify “normal equation”, E[IC(X)(a1E[Y1|X]+a2E[Y2|X])] =
a1E[IC(X)E[Y1|X]] +a2E[IC(X)E[Y2|X]] = a1E[IC(X)Y1] +a2E[IC(X)Y2] = E[IC(X)(a1Y1 +a2Y2)]
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4. (Law of Total Expectation): E[E[Y |G]] = E[Y ]

Proof. Taking A = Ω ∈ G in of Definition 1.5.1-1(b)

5. (Conditional Expectation given degenerated r.v.): E[Y |{∅,Ω}] = E[Y ]

6. If σ(Y ) ⊂ G, then E[Y |G] = Y a.s.

7. (Law of Successive Conditioning): If G∞ is a sub–σ–field of G, then E[E[X|G]|G∞] = E[E[X|G∞]|G] =
E[X|G∞] a.s.

Proof. Taking A ⊂ Range(φ), then E[IA(φ(X))E[Y |X]] = E[Iφ−1(A)(X)E[Y |X]] = E[Iφ−1(A)(X)Y ] =
E[IA(φ(X))Y ] = E[IA(φ(X))]E[Y |φ(X)] The last calculation shows that E[Y |φ(X)] satisfies the nor-
mal equations that define E[E[Y |X]|φ(X)]. The other equation follows from 6. since E[Y |φ(X)] is
already a function of X.

8. If σ(Y1) ⊂ G and E|Y1Y2| <∞, then E[Y1Y2|G] = Y1E[Y2|G] a.s.

Proof. If Y1 is G-measurable, then we may treat it the same as a constant when computing E[Y1Y2|G].
Clearly Y1E[Y2|G] is G-measurable. We will verify property 2 of the definition only when X1 is an
G-measurable simple function, say Y1 =

∑
aiIAi for Ai ∈ G. In this case, for Ai ∈ G,

∫
A
Y1E[Y2|G]dP =∑

ai
∫
A∩Ai E[Y2|G]dP =

∑
ai
∫
A∩Ai Y2dP =

∫
A
Y1Y2dP. The second equality follows since A ∩Ai ∈ G.

First show E[ψ(X)Y ] = E[ψ(X)E[Y |X]] by starting with ψ simple. E[ψ(X)Y |X] = ψ(X)E[Y |X]
a.s. true for IA(X) = ψ(X). The normal equations for E[IA(X)Y |X], ∀B, E[IB(X)IA(X)Y ] =
E[IB(X)E[IA(X)Y |X]] = E[IB(X)IA(X)E[Y |X]]. Thus, IA(X)E[Y |X] satisfies for E[IA(X)Y |X],
Also, the linearity holds for simple function. Then apply MCT & simple function approximation for
ψ ≥ 0, then ψ = ψ+−ψ−. After this it is easy to check that ψ(X)E[Y |X] satisfies the normal equations
for E[ψ(X)Y |X].

9. If X and Y are independent and E|g(X,Y )| < ∞ for a Borel function g, then E[g(X,Y )|X = x] =
E[g(x, Y )] a.s. PX .

10. If E[Y 2] <∞, then E[Y |G]2 ≤ E[Y 2|G] a.s.

11. (Monotone Convergence Theorem): If Yn ≥ 0 for any n, then E[lim inf
n
Yn|G] ≤ lim inf

n
E[Yn|G]

a.s. If 0 ≤ Yi ↑ Y a.s. then E[Yi|G] ↑ E[Y |G] a.s.

Proof. Clearly limE[Yi|G] is a G-measurable r.v. by Proposition 1.2.1 (c). If A ∈ G then IAE[Yi|G]
is a nonnegative increasing sequence of functions so by two applications of the ordinary Monotone
Convergence Theorem,

∫
A

limE[Yi|G]dP = lim
∫
A
E[Yi|G]dP = lim

∫
A
YidP =

∫
A
Y dP. The result

follows from the essential uniqueness of conditional expectations.

12. (Dominated Convergence Theorem): Suppose there is an integrable r.v. X s.t. Yi ≤ X a.s. for
all i and suppose that Yi → Y a.s. Then E[Yi|G]→ E[Y |G]

We can replace all the σ-field above with a random variable / random vector. It can also be shown that
Holder’s inequality, Liapounov’s inequality, Minkowski’s inequality, and Jensen’s inequality hold a.s. with
the expectation E replaced by the conditional expectation E(·|G).
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Example 1.5.5. Recall the MSPE in the beginning of this section. Let Y be a random variable on
(Ω,F ,P) with E[Y 2] < ∞ and let X be a measurable function from (Ω,F ,P) → (Λ,G). One may wish
to predict the value of Y based on an observed value of X. Let g(X) be a predictor, i.e., g ∈ N =
{all Borel functions g with E[g(Y )]2 < ∞}. Each 2 predictor is assessed by the “mean squared prediction
error” E[Y − g(X)] . We now show that E(Y |X) is the best predictor of Y in the sense that

E[Y − E(Y |X)] = min
g∈N

E[Y − g(X)]2

First, Theorem 1.5.6-8 implies E(Y |X) ∈ N . Next, for any g ∈ N ,

E[Y − g(X)]2 = E[Y − E(Y |X) + E(Y |X)− g(X)]2

= E[Y − E(Y |X)]2 + E[E(Y |X)− g(X)]2 + 2E {[Y − E(Y |X)][E(Y |X)− g(X)]}
= E[Y − E(Y |X)]2 + E[E(Y |X)− g(X)]2 + 2E {E{[Y − E(Y |X)][E(Y |X)− g(X)]|Y }}
(by Theorem 1.5.6-4 Law of Total Expectation)

= E[Y − E(Y |X)]2 + E[E(Y |X)− g(X)]2 + 2E {[[E(Y |X)− g(X)]E[Y − E(Y |X)|Y ]}
(by Theorem 1.5.6-8)

= E[Y − E(Y |X)]2 + E[E(Y |X)− g(X)]2

(by Theorem 1.5.6-1,3,4: Conditional expectation of constant r.v.; Linearity; Law of Total Expectation)

≥ E[Y − E(Y |X)]2,

Theorem 1.5.7. (Conditional Expectation and Independence): Suppose Y is an integrable r.v.
and X1 and X2 are random vectors with (Y,X1) independent of Y2. Then E[Y |X1, X2] = E[Y |X1] a.s. In
particular, E[Y |X2] = E[Y ] a.s. From an intuitive point of view, X2 provides no information about Y if
they are independent, so it is reasonable that the conditional expectation of Y given X2 not depend on X2.

Proof. First, E(Y |X1) is Borel on (Ω, σ(X1, X2)), since σ(X1) ⊂ σ(X1, X2). Next, we need to show that for
any Borel set B ∈ Bk1+k2 , ∫

(Y1,Y2)−1(B)

XdP =

∫
(Y1,Y2)−1(B)

E[Y |X1]dP

If B = B1 ×B2, where Bi ∈ Bk, then (Y1, Y2)−1(B) = Y −1
1 (B1) ∩ Y −1

2 (B2) and∫
Y −1

1 (B1)∩Y −1
2 (B2)

E[Y |X1]dP =

∫
IY −1

1 (B1)IY −1
2 (B2)E[Y |X1]dP

=

∫
IY −1

1 (B1)E[Y |X1]dP
∫
IY −1

2 (B2)dP =

∫
IY −1

1 (B1)XdP
∫
IY −1

2 (B2)dP

=

∫
IY −1

1 (B1)IY −1
2 (B2)XdP =

∫
Y −1

1 (B1)∩Y −1
2 (B2)

XdP

This shows that
∫

(Y1,Y2)−1(B)
XdP =

∫
(Y1,Y2)−1(B)

E[Y |X1]dP holds for B = B1 ×B2. We can show that the

collection H = {B ⊂ Rk1+k2 : Bsatisfies
∫

(Y1,Y2)−1(B)
XdP =

∫
(Y1,Y2)−1(B)

E[Y |X1]dP} is a σ-field. Since

we have already shown that Bk1
× Bk2

⊂ H,Bk1+k2
= σ(Bk1

× Bk2
) ⊂ H and thus the result follows.

Theorem 1.5.8. (Bayes Formula): Suppose Θ : (Ω,F ,P)→ (Λ2,G2) is a random element and let λ be
a σ-finite measure on (Λ2,G2) such that Law[Θ]� λ. Denote the corresponding density (Prior Density) by

π(θ) =
dLaw[Θ]

dλ
(θ) where π is the probability measure on range of Θ (parameter space), π � λ. Let µ be a

σ-finite measure on (Λ1,G1). Suppose that for each θ ∈ Λ1 there is given a probability density function w.r.t.
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µ denoted f(·|θ). Denote by X a random element taking values in Λ1 with
dLaw[X|Θ = θ]

dµ
=
dPX|Θ(·|θ)

dµ
=

f(·|θ). Then there is a version of posterior density Law[Θ|X = x] given by

π(θ|x) =
dLaw[Θ|X = x]

dλ
(θ) =

f(x|θ)π(θ)∫
Λ2
f(x|θ̃)π(θ̃)dλ(θ̃)

Proof. By Section 1.5.4 Conditional distribution with h(x, θ) = f(x|θ), there is a joint distribution for (X,Θ)
for which π(θ) is the marginal density of θ w.r.t. λ, f(x|θ)π(θ) is the joint density for (X,Θ), and f(x|θ)
is the conditional density for X given Θ = θ. There only remains to verify the formula for the conditional
density of Θ given X = x. But the marginal density for X is the joint density with θ integrated out, i.e.∫

Λ2
f(x|θ)π(θ)dλ(θ). Thus, one recognizes the r.h.s. of the formula as the joint density divided by the

marginal for X, i.e. the conditional density for Θ given X = x.

1.5.6 Discussion

Why do we call normal equation? How to solve a general prediction loss function? (It will be useful in
learning problem that we have a conditional expectation on objective function, and in CAAM Optimization
course.) How to compute E[Y |X] and PY |X with nontrivial example?

Example 1.5.6. Let X be a R-valued r.v. and put Y = X2. Assume PX has a Lebesgue density f(x). Find
P −X|Y . It may not be obvious, but there is no joint density for PXY w.r.t. a product measure, so we can’t
do the “usual” type of calculation. Note that PXY (Q) = 1, where Q is the parabola Q = {(x, y) : y = x2}.
Now m2(Q) = 0 so we know PXY doesn’t have a density w.r.t. m. Indeed, with a lot more work, one can
show it doesn’t have a joint density w.r.t. any product measure (with the factor measures being σ-finite, of
course). So, what are we to do? Use our intuitive understanding of conditioning to guess the result, then
verify that it works.

Given Y = y, we know X took on one of two values, ±√y. One way of thinking about conditioning and
Lebesgue densities goes back to Feller’s Volume 2 in his classic introduction to probability. We will present
an “engineering” version of that argument. It is similar to treatments of conditioning based on non-standard
analysis, where differentials are respectable mathematical objects.

Assume for now the density f(x) is continuous. (Once we have the right answer, the continuity will turn
out not to matter.) In reality, we can never observe a continuous r.v.: that would mean having an infinite

number of digits after the decimal point. Let X denote the rounded off version of X and
δ

2
the maximum

roundoff error. For example, if we round off to 2 decimal digits, then
δ

2
= 0.005, i.e., δ = 0.01.

Note that X is a discrete r.v. since it must take values in δ × Z. If x̃ is a possible value of X̃, then

P[X̃ = x̃] =

∫ x̃+ δ
2

x̃− δ2
f(w)dw

.
= f(x̃)δ

This is a crude rectangle-rule approximation to the integral which is valid as long as δ is small enough. This
is where we use the assumed continuity of f(x).

Now, X̃ and Ỹ = X̃2 are both discrete and we can use elementary conditional probability to solve the
problem for these r.v.’s. Note that even when X is continuous, PX|Y (·|y) must be a discrete distribution,
since all the probability is concentrated on the 2 points ±√y.
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Computing the conditional probability mass function (p.m.f.) of X̃ given Ỹ = y using elementary conditional
probability, it suffices to compute for one of the possible values:

P[X̃ =
√
y|Ỹ = y] =

P[X̃ =
√
y&Ỹ = y]

P[Ỹ = y]
=

P[X̃ =
√
y]

P[X̃ =
√
y or X̃ = −√y]

.
=

f(
√
y)δ

(f(
√
y) + f(−√y))δ

=
f(
√
y)

f(
√
y) + f(−√y)

Now the “
.
=” approximation becomes exact in the limit as δ → 0. Let’s conjecture this is the right answer

in general and see if we can prove it works.

In the previous calculation, we implicitly assumed y > 0, but the cases y = 0 and y < 0 are easy to deal
with. For convenience, define for y > 0,

p(y) =
f(
√
y)

f(
√
y) + f(−√y)

q(y) =
f(−√y)

f(
√
y) + f(−√y)]

For general X with dPX = fdm, we conjecture that PX|Y (where Y = X2) is given by

PX|Y (·|y) =

{
p(y)δ√y + q(y)δ−√y if y > 0

δ0 if y ≤ 0

In the last line, we could have used any probability distribution on the appropriate space (R, in this case),
since P[Y ≤ 0] = 0.

Let’s check that this works. That means, checking the defining properties for PX|Y . We want to check that
for each y, PX|Y (·|y) is a probability measure on Range(X). This is obvious. We want to check that for
each measurable B ⊂ Range(X), P [X ∈ B|Y = y] = PX|Y (B|y) for PY -almost all y. To check this, we
observe it is a function of y and we need to show that for all (measurable.) A ⊂ R, E[IA(Y )IB(X)] =
E[IA(Y )PX|Y (B|Y )]. This is just the normal equations for E[IB(X)|Y ] = P [X ∈ B|Y ]. Note the the
“PX|Y ” should be interpreted as our proposed version of PX|Y . The statement is true for the real PX|Y , and
we want to verify that our proposed PX|Y satisfies it.

Since P [Y ≤ 0] = 0,we can replace A with A ∩ (0,∞), i.e., assume A ⊂ (0,∞). Now the E[IA(Y )IB(X)] is
simply P [Y ∈ A&X ∈ B] = P [X2 ∈ A&X ∈ B]. To work with the E[IA(Y )PX|Y (B|Y )], it is convenient to
write

PX|Y (B|Y ) = p(Y )IB(
√
Y ) + q(Y )IB(−

√
Y ) = p(X2)IB(|X|) + q(X2)IB(−|X|)

valid for Y > 0. The first equality follows from the general fact that IC(z) = δz(C).

In order to work with the event [X2 ∈ A], define C+ = {x : x > 0,&x2 ∈ A}, C− = {x : x < 0,&x2 ∈ A},
then [X2 ∈ A] = [X ∈ C+] ∪ [X ∈ C−], and the two events are disjoint. Thus, IA(Y ) = IA(X2) =
IC+(X) + IC−(X). Note that C− = −C+, by which we mean −1 times every element in C+. Put another
way, IC+

(−x) = IC−(x).

Working on E[IA(Y )PX|Y (B|Y )],

E[IA(Y )PX|Y (B|Y )] = E[(IC+
(X) + IC−(X))(p(X2)IB(|X|) + q(X2)IB(−|X|))]

= E[IC+(X)p(X2)IB(X)] + E[(IC+(X)q(X2)IB(−X)]

+ E[IC−(X)p(X2)IB(−X)] + E[IC−(X)q(X2)IB(X)]
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In the above, when we remove the absolute value signs around X, we make use of the sign of X implied by
the indicator of C±. For instance, IC−(X)IB(|X|) = IC−(X)IB(−X) since X ∈ C− =⇒ X < 0 =⇒ |X| =
−X.

We can hopefully work with E[IC+
(X)p(X2)IB(X)]+E[(IC+

(X)q(X2)IB(−X|]+E[IC−(X)p(X2)IB(−X)]+
E[IC−(X)q(X2)IB(X)] to get E[IA(Y )IB(X)]. We tried various ways to combine them before finding the
right approach. We will combine the first and fourth terms, but first note

IC+
(x)p(x2) + IC−(x)q(x2) = IC+

(x)
f(x)

f(x) + f(−x)
+ IC−(x)q(x2)

f(x)

f(x) + f(−x)

= IA(x2)
f(x)

f(x) + f(−x)

The first equation follows since since the numerator of IC−(x)q(x2) is IC−(x)f(−
√
x2) = IC−(x)f(x) be-

cause IC−(x) = 1 =⇒ x < 0 =⇒ x = −
√
x2. Similarly, to combine E[(IC+(X)q(X2)IB(−X|] +

E[IC−(X)p(X2)IB(−X)] we will use IC+
(x)q(x2) + IC−(x)p(x2) = IA(x2)

f(−x)

f(x) + f(−x)

Now we compute the expectations using the distribution of X (with its Lebesgue density)

E[IC+
(X)p(X2)IB(X)] + E[IC−(X)q(X2)IB(X)] =

∫
IA(x2)IB(x)

f(x)

f(x) + f(−x)
f(x)dm(x)

E[IC+(X)q(X2)IB(X)] + E[IC−(X)p(X2)IB(X)] =

∫
IA(x2)IB(−x)

f(−x)

f(x) + f(−x)
f(x)dm(x)

=

∫
IA(z2)IB(z)

f(z)

f(−z) + f(z)
f(−z)dm(z)

The last step follows by changing variables −x→ z. Recall that dm(x) is basically the dx you are used to.

Now we combine the results from this last computation. After substituting “x” for “z” as a dummy variable
of integration, the sum of the two previous results is∫

IA(x2)IB(x)
f(x)

f(x) + f(−x)
[f(x) + f(−x)]dm(x) =

∫
IA(x2)IB(x)f(x)dm(x)

= E[IA(X2)IB(X)]

Hence, we have verified that our proposed form for PX|Y (·|y) is a version of the correct answer. Note that
we can change it on a set of y values having PY measure zero, and the answer would still be correct.

Remark. Suppose (instead of squared error of loss) we want a prediction loss where L(y.ŷ),

E[L(Y, h(X))] = E[E[L(Y |h(X)|X)]] (by total expectation)

=

∫ [∫
L(y, h(x))dPY |X(y|x)

]
dPX(x) (dPY |X(y|x) = dµ(y))

If h∗(x) = argmin
a

∫
L(y, a)dPY |X(y|x), with a exists and unique, we can update the “data” x here and derive

the argmin and this minimize E[L(Y, h(X))] ≥ E[L(Y, h∗(X))] over h(X)

Finally, we have already termed our conditional expectation as “normal equations” so many times. Why?
Because we want to find h(X) to minimize E[(Y − h(X))2], we can set the L2 norm of probability measure
L2(P) = {W : E[W 2] < ∞}, and this is a linear space. By defining an inner product on L2 with 〈U, V 〉 =
E[UV ], and the properties
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1. 〈U, V 〉 = 〈V,U〉

2. 〈a1U1 + a2U2, V 〉 = a1〈U1, V 〉+ a2〈U2, V 〉

3. 〈U,U〉 ≥ 0, and it equals to 0 iff U = 0 a.s.

is complete. We suppose M = {h(X) : h : Range(X)→ R&E[h(X)2] <∞}, this is a closed linear subspace.
In L2, ||W || =

√
〈W,W 〉, MSPE(Y, h(X)) = ||Y − h(X)||2, Y − h∗(X) is normal to linear subspace M i.e.

∀g(X) ∈M , 〈Y − h(X), g(X)〉 = 0, and h∗(X) = E[Y |X] i.e. E[(Y − h∗(X))g(X)] = 0,∀g(X) ∈M

References

[1] D.D. Cox , “Mathematical Statistics for Data Scientist.” Chapter 1.

[2] J. Shao , “Mathematical Statistics.” Chapter 1.

[3] P. Billingsley , “Probability and Measure.” Section 2, 15, 16, 18, 32-34.

[4] R.B. Ash , “Real Analysis and Probability.” Chapter 1, 2.2

[5] K.L. Chung , “A Course in Probability Theory.” Chapter 1, 2, 9.1


